107 research outputs found

    Panretinal Photocoagulation Using Short-Pulse Laser Induces Less Inflammation and Macular Thickening in Patients with Diabetic Retinopathy

    Get PDF
    We compared the effect of panretinal photocoagulation (PRP) using short-pulse laser (SPL) and conventional laser, regardless of the number of spots, in terms of their effect on the progression of diabetic macular edema (DME) and anterior flare intensity (AFI) in patients with high-risk nonproliferative diabetic retinopathy (non-PDR). Forty-two eyes of 42 patients were subjected to PRP using the conventional argon laser (Conv group) or SPL (SPL group). CRT and AFI levels in the SPL group were significantly lower than those in the Conv group (CRT at 4, 6, and 10 weeks; AFI at 6, 10, and 18 weeks). Eyes of rabbits were photocoagulated using conventional laser with 500 spots (Conv 500s), SPL with 500 spots (SPL 500s), or 1000 spots (SPL 1000s). Vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), intercellular adhesion molecule-1 (ICAM-1), and monocyte chemotactic protein-1 (MCP-1) levels in vitreous humor were measured using an immunoassay. Compared to conventional laser, VEGF, IL-6, and MCP-1 levels were significantly lower in the SPL 1000s and SPL 500s groups. In patients with high-risk non-PDR, SPL has a greater preventive effect on the progression of DME and AFI and produces less inflammatory cytokines than conventional lasers

    Crystal Structure Control of Binary and Ternary Solid-Solution Alloy Nanoparticles with a Face-Centered Cubic or Hexagonal Close-Packed Phase

    Get PDF
    The crystal structure significantly affects the physical and chemical properties of solids. However, the crystal structure-dependent properties of alloys are rarely studied because controlling the crystal structure of an alloy at the same composition is extremely difficult. Here, for the first time, we successfully demonstrate the synthesis of binary Ru–Pt (Ru/Pt = 7:3) and Ru–Ir (Ru/Ir = 7:3) and ternary Ru–Ir–Pt (Ru/Ir/Pt = 7:1.5:1.5) solid-solution alloy nanoparticles (NPs) with well-controlled hexagonal close-packed (hcp) and face-centered cubic (fcc) phases, through the chemical reduction method. The crystal structure control is realized by precisely tunning the reduction speeds of the metal precursors. The effect of the crystal structure on the catalytic performance of solid-solution alloy NPs is systematically investigated. Impressively, all the hcp alloy NPs show superior electrocatalytic activities for the hydrogen evolution reaction in alkaline solution compared with the fcc alloy NPs. In particular, hcp-RuIrPt exhibits extremely high intrinsic (mass) activity, which is 3.1 (3.2) and 6.7 (6.9) times enhanced compared to that of fcc-RuIrPt and commercial Pt/C

    Direct Photocoagulation Guided by Merged Retinal Images for the Treatment of Focal Diabetic Macular Edema

    Get PDF
    Purpose. To introduce a novel laser photocoagulation (PC) protocol named merged image-guided PC (MIG-PC), which included merging the images of the fundus, optical coherence tomography (OCT) map, and fluorescein angiography (FA). We compared the anatomical and functional results between MIG-PC and FA-guided PC (FG-PC) for the treatment of focal diabetic macular edema (DME). Method. We examined the treatment outcomes in 27 consecutive eyes treated with MIG-PC compared with 28 matched eyes treated with FG-PC. We identified the microaneurysms (MAs) located in the focal edema areas and ablated them using focal PC. Best-corrected visual acuity (BCVA) and retinal thickness (RT) measured using OCT were compared between the groups at baseline and 2, 4, 8, 12, and 24 weeks after treatment. Results. The foveal and perifoveal RT were reduced after treatment in both the groups, and the perifoveal RT in the MIG-PC group was significantly lower than that in the FG-PC group at 4 weeks and thereafter. BCVA in the MIG-PC group was significantly higher than that in the FG-PC group at 12 and 24 weeks. The numbers of laser spots (p=0.0001), additional laser treatments (p=0.0121), and intravitreal injection of ranibizumab (p=0.0012) in the MIG-PC group were significantly lower than those in the FG-PC group (Mann–Whitney test). Conclusion. MIG-PC contributed to the improvement in BCVA and reduction in RT, number of laser shots required, and retreatment rates. Based on our data, MIG-PC can be recommended for the treatment of focal DME. This trial is registered with ID UMIN000030390

    Transcriptomic comparison between beetle strains selected for short and long durations of death feigning

    Get PDF
    The molecular basis of death feigning, an antipredator behavior that has received much attention recently, was analyzed. We compared the gene expression profiles of strains with different behaviors, i.e., different durations of death feigning, in the beetle Tribolium castaneum. Beetles artificially selected for short (S) and long (L) durations of death feigning for many generations were compared thoroughly by RNA sequencing. We identified 518 differentially expressed genes (DEGs) between the strains. The strains also showed divergence in unexpected gene expression regions. As expected from previous physiological studies, genes associated with the metabolic pathways of tyrosine, a precursor of dopamine, were differentially expressed between the S and L strains; these enzyme-encoding genes were expressed at higher levels in the L strain than in the S strain. We also found that several genes associated with insulin signaling were expressed at higher levels in the S strain than in the L strain. Quantitative real-time PCR analysis showed that the relative expression levels of Tchpd (encoding 4-hydroxyphenylpyruvate dioxygenase, Hpd) and Tcnat (encoding N-acetyltransferase, Nat) were significantly higher in the L strain than in the S strain, suggesting the influence of these enzymes on the supply of dopamine and duration of death feigning

    Efficient overall water splitting in acid with anisotropic metal nanosheets

    Get PDF
    超高効率な水の電気分解を実現するナノシート状合金触媒を開発 --再生可能エネルギーによる水素社会実現へ大きく貢献--. 京都大学プレスリリース. 2021-02-17.Water is the only available fossil-free source of hydrogen. Splitting water electrochemically is among the most used techniques, however, it accounts for only 4% of global hydrogen production. One of the reasons is the high cost and low performance of catalysts promoting the oxygen evolution reaction (OER). Here, we report a highly efficient catalyst in acid, that is, solid-solution Ru‒Ir nanosized-coral (RuIr-NC) consisting of 3 nm-thick sheets with only 6 at.% Ir. Among OER catalysts, RuIr-NC shows the highest intrinsic activity and stability. A home-made overall water splitting cell using RuIr-NC as both electrodes can reach 10 mA cm−2geo at 1.485 V for 120 h without noticeable degradation, which outperforms known cells. Operando spectroscopy and atomic-resolution electron microscopy indicate that the high-performance results from the ability of the preferentially exposed {0001} facets to resist the formation of dissolvable metal oxides and to transform ephemeral Ru into a long-lived catalyst

    Phase Control of Solid-Solution Nanoparticles beyond the Phase Diagram for Enhanced Catalytic Properties

    Get PDF
    The crystal structure, which intrinsically affects the properties of solids, is determined by the constituent elements and composition of solids. Therefore, it cannot be easily controlled beyond the phase diagram because of thermodynamic limitations. Here, we demonstrate the first example of controlling the crystal structures of a solid-solution nanoparticle (NP) entirely without changing its composition and size. We synthesized face-centered cubic (fcc) or hexagonal close-packed (hcp) structured PdxRu₁–x NPs (x = 0.4, 0.5, and 0.6), although they cannot be synthesized as bulk materials. Crystal-structure control greatly improves the catalytic properties; that is, the hcp-PdxRu₁–x NPs exceed their fcc counterparts toward the oxygen evolution reaction (OER) in corrosive acid. These NPs only require an overpotential (η) of 200 mV at 10 mA cm⁻², can maintain the activity for more than 20 h, greatly outperforming the fcc-Pd₀.₄Ru₀.₆ NPs (η = 280 mV, 9 min), and are among the most efficient OER catalysts reported. Synchrotron X-ray-based spectroscopy, atomic-resolution electron microscopy, and density functional theory (DFT) calculations suggest that the enhanced OER performance of hcp-PdRu originates from the high stability against oxidative dissolution

    Very Early Diuretic Response After Admission for Acute Heart Failure

    Get PDF
    BACKGROUND: In hospitalized heart failure patients, a poor diuretic response (DR) during the first days of hospital admission is associated with worse outcomes. However, it remains unknown whether diuretic response in the first hours has similar prognostic value. Moreover, data on the sequential change in DR during hospital admission are lacking. METHODS AND RESULTS: DR (urine output per 40 mg furosemide-equivalent diuretics dose) was measured from 0 to 6 hours (DR6), 6 to 48 hours (DR6-48), and 0 to 48 hours (DR48) of the patient's arrival to the emergency department (ED) in 1551 patients with AHF (mean age 78 years old; 56% were male; and 48% were de-novo patients with heart failure). Patients with a poor DR within the first 6 hours were older age, had worse renal function and were already on diuretic treatment before admission. DR6 was only weakly correlated with DR6-48 (Spearman's rho=0.273; p<0.001). DR6, DR6-48 and DR48 were all significantly associated with 60-day mortality independent of other prognostic factors. DR6 and DR48 showed comparable prognostic ability. However, the model combining DR6 with DR6-48 significantly exceeded both DR6 (NRI: 0.249, p=0.032) and DR48 (NRI: 0.287, p=0.025) with regard to 60-day mortality prediction. CONCLUSION: Both DR measured within the first 6 hours of ED arrival and DR measured during the first 48 hours in patients with AHF have similar prognostic value, although they were moderately correlated. Changes in DR over time provide additional prognostic information

    Cure of ADPKD by Selection for Spontaneous Genetic Repair Events in Pkd1-Mutated iPS Cells

    Get PDF
    Induced pluripotent stem cells (iPSCs) generated by epigenetic reprogramming of personal somatic cells have limited therapeutic capacity for patients suffering from genetic disorders. Here we demonstrate restoration of a genomic mutation heterozygous for Pkd1 (polycystic kidney disease 1) deletion (Pkd1(+/−) to Pkd1(+/R+)) by spontaneous mitotic recombination. Notably, recombination between homologous chromosomes occurred at a frequency of 1∼2 per 10,000 iPSCs. Southern blot hybridization and genomic PCR analyses demonstrated that the genotype of the mutation-restored iPSCs was indistinguishable from that of the wild-type cells. Importantly, the frequency of cyst generation in kidneys of adult chimeric mice containing Pkd1(+/R+) iPSCs was significantly lower than that of adult chimeric mice with parental Pkd1(+/−) iPSCs, and indistinguishable from that of wild-type mice. This repair step could be directly incorporated into iPSC development programmes prior to cell transplantation, offering an invaluable step forward for patients carrying a wide range of genetic disorders
    corecore