15 research outputs found

    Effects of the Blp1 locus, which controls melanin accumulation in the barley ear, on the size and weight of seeds

    Get PDF
    Background. In cereals, photosynthetically active parts of the ear significantly contribute to seed size and weight at the grain-filling stage. In barley, ear tissues may accumulate melanin pigments synthesized in chloroplast-derived melanoplasts. Effects of such pigments on yield parameters of seeds have not been evaluated to date.Materials and methods. Seed weight and size assessed by image analysis were compared between two near-isogenic barley lines differing in alleles of the Blp1 gene, which determines melanin accumulation in ear tissues. Data on grainrelated parameters were collected during 6 years and include data on seeds grown either in the field or under greenhouse conditions.Results and discussion. A negative effect of the Blp1 locus on the weight of 1000 seeds harvested in the field but not in the greenhouse was revealed. To determine whether this effect is related to grain size, a comparison of two-dimensional linear parameters of seeds between the lines was performed. It was shown that unlike the length and the area of seeds, the width of seeds was also negatively affected by the Blp1 locus. Although the same factors affected the weight of 1000 seeds and the width of seeds, a correlation between them was not found, implying a dependence of seed weight on other factors such as thickness and its related parameter, seed volume.Conclusion. Effects of barely ear pigmentation and of the gene controlling it on yield-related parameters of seeds were studied here for the first time. The observed negative impact of the Blp1 locus on seed weight and size may be mediated by an interfering chloroplast activity and/or accumulation of assimilates via melanogenesis. Additional studies are necessary to test this supposition and to investigate the interaction of melanin synthesis and photosynthetic activity of the tissues accumulating this pigment

    Differently expressed ‘Early’ flavonoid synthesis genes in wheat seedlings become to be co-regulated under salinity stress

    Get PDF
    Synthesis of flavonoid compounds in plants is associated with their response to environmental stress; however, the way in which the transcription of the relevant structural genes is regulated in stressed plants is still obscure. Transcription of the ‘early’ flavonoid synthesis genes Chi-1 and F3h-1 in the wheat coleoptile was investigated by quantitative real-time PCR in seedlings exposed to 100 mM or 200 mM NaCl. Under mild stress, transcript abundance of both Chi-1 and F3h-1 was increased significantly after six days of exposure. Under severe stress, the level of transcription was the same or even lower than that seen in nonstressed seedlings. In non-stressed conditions, the transcription patterns of Chi-1 and F3h-1 were quite distinct from one another, whereas under stress they became similar. An observed alteration in structural genes regulation mode under stress conditions may optimize flavonoid biosynthesis pathway to produce protective compounds with maximum efficiency

    Structural and functional divergence of homoeologous genes in allopolyploid plant genomes

    Get PDF
    Allopolyploid organisms can be formed by hybridization between closely related plant species with similar genomes. It is believed that many plant species have passed through allopolyploidization, which played a significant role in the formation of a huge diversity of plants, as well as their high adaptive capacity. Thanks to the whole genome sequencing of a wide range of angiosperm species and comparative analysis of genome structure, the sequence of events that formed the genomes of modern plant taxa was restored. These studies have shown that many diploid species have passed through more than one cycle of polyploidization-diploidization. The purpose of this review is to summarize the estimates of what proportion of genes is undergoing changes due to allopoly-ploidization and to illustrate the variety of mechanisms underlying the functional divergence of homoeologous copies (orthologous genes in allopolyploid subgenomes). Changes of individual copies can be associated with epigenetic features of the gene organization (the methylation status of the promoter region or the presence of copy-specific small interfering RNA) or can affect structure of the coding or regulatory regions of the gene. Studies on artificial allopolyploid plants showed widespread transcriptional dominance and change of the transcription level as compared with the genes of diploid parental forms. The study of the transcription of certain homoeologous gene copies allowed estimating the extent of the complete suppression of certain homoeologous genes in newly synthesized (0.4–5.0 %) and natural (30 %) allopolyploids. One the whole, full or partial suppression affects up to 49% of the wheat genes

    Anthocyanin content in grains of barley and oat accessions from the VIR collection

    Get PDF
    Background. Barley (Hordeum vulgare L.) and oat (Avena sativa L.) are grain crops belonging to one of the main sources of food and forage in the Russian Federation. They contain proteins, various groups of vitamins, fats, carbohydrates, β-glucans, minerals and different bioloactive compounds, including anthocyanins. Recently, much attention has been given to anthocyanins due to their various valuable properties. Therefore, the grain of barley and oat is a potentially promising economic product and a component of functional nutrition. The aim of this work was to estimate the content of anthocyanins in barley and oat accessions with different pigmentation of kernels and lemma. Materials and methods. 32 barley and 11 oat accessions were studied by spectrophotometry. Anthocyanins were extracted from barley and oat kernels with a 1% HCl solution in methanol. Results and discussion. As a result of the study, accessions and varieties with the highest content of anthocyanins were identified: for barley these are k-15904 (China), k-19906 (Mongolia), k-18709 (Japan), k-18723, k-18729 (Canada), k-17725 (Turkey) belonging to var. violaceum; k-29568 (Japan) – var. densoviolaceum; k-8690 (Ethiopia) – var. griseinigrum; k-28205 (Germany) – var. nudidubium; and for oat these are k-15527 (A. ayssinica Hochst. var. braunii Koern., Ethiopia) and k-15245 (A. strigosa Schreb. subsp. brevis var. tephera Mordv. ex Sold. et Rod., Poland). Conclusion. The obtained results demonstrated that the VIR collection includes accessions with potential value for the development of varieties with an increased anthocyanin content, which can be used as functional food products

    Studying grain color diversity in the barley collection of VIR

    Get PDF
    Background. Dark color of barley grain (Hordeum vulgare L.) can be caused by the synthesis and accumulation of two types of polyphenolic pigments – anthocyanins and melanins, which perform important functions in plant life, participating in the regulation of growth and development, and protecting plants from adverse environmental conditions. The aim of this study was to investigate the diversity of barley in the VIR collection in the context of grain color.Materials and methods. To analyze the pigment composition of the grain, 150 barley accessions with colored grains were selected from the VIR collection. Anthocyanins and melanins in grain husk were identified using qualitative reactions.Results and discussion. It was shown that in 60% of the accessions the dark color of their grain was induced by independent accumulation of melanin, while the accessions characterized by accumulation of only anthocyanins, and those with combined accumulation of anthocyanins and melanins, were 14.6% and 14%, respectively. For 11.3% of the accessions the presence of anthocyanins and melanins in grain husk was not found; their pigmentation could presumably be associated with an increased content of other polyphenolic pigments – proanthocyanidins. Accessions with melanin in grain predominated in all identified geographic groups, while other types of pigmentation were most evenly represented in the regions with the widest genetic diversity of barleys – Africa, East Asia, and the Middle East.Conclusion. Dark pigmentation of barley grain was shown to be mainly associated with the accumulation of melanin, and this type of pigmentation prevails in all geographical regions identified. The results obtained made it possible to describe the barley collection more fully and expand the possibilities of its utilization

    Molecular-genetic mechanisms underlying fruit and seed coloration in plants

    Get PDF
    Diverse patterns of plant fruit and seed coloration are determined by the presence of two main types of pigment, carotenoids (red, orange and yellow color) and anthocyanins (purple, blue, red). Thеy belong to two groups of secondary metabolites, isoprenoids and flavonoids. Interest towards the genetic mechanisms that control coloration in plants has recently increased due to the antioxidant and antimicrobial properties of some pigments and their colorless precursors consumed with plant-derived food. The genes encoding enzymes involved in step-bystep conversion of initial organic molecules to final pigmented compounds are referred to as structural genes, while regulatory genes are responsible for activation of the expression of structural genes and control the synthesis of pigments at certain times and in proper tissue. The data in plant genetics accumulated to date show that the inter- and intraspecies phenotypic diversity in coloration is mainly related with regulatory genes. Previously developed rich gene collections and precise genetic models for coloration traits in dicots and monocots as well as the rapid development of molecular genetic methods for studying plants allowed for studying genetic regulation of pigment synthesis at a molecular level. The peculiarities of the regulation of carotenoid biosynthesis are exemplified with Solanaceae fruits. The genetic mechanisms underlying the synthesis of various flavonoid pigments are exemplified with a study of seed color in Poaceae plants. In summary, prospects for the practical use of regulatory genes that control pigment synthesis are discussed and examples of their practical use in vegetable and cereal crop breeding are given

    FLAVONOID BIOSYNTHESIS GENES IN WHEAT

    No full text
    The biosynthesis of flavonoid compounds is one of the best-studied metabolic pathways in plants. The researchers’ attention to the biochemical, physiological and genetic aspects of flavonoid biosynthesis is associated primarily with the wide range of their biological properties. In addition, the flavonoid biosynthesis gene system is an excellent genetic model. Owing to the development of molecular and genomic methods in recent years, considerable progress is made in the understanding of the molecular and genetic mechanisms underpinning flavonoid biosynthesis in bread wheat (Triticum aestivum L.). This article provides a brief overview of the results of research in the structural and functional organization of flavonoid biosynthesis genes in wheat and its relatives
    corecore