14 research outputs found

    Pre-Existing Interstitial Lung Abnormalities Are Independent Risk Factors for Interstitial Lung Disease during Durvalumab Treatment after Chemoradiotherapy in Patients with Locally Advanced Non-Small-Cell Lung Cancer

    No full text
    Introduction/Background: Chemoradiotherapy (CRT) followed by durvalumab, an immune checkpoint inhibitor, is the standard treatment for locally advanced non-small-cell lung cancer (NSCLC). Interstitial lung disease (ILD) is a life-threatening toxicity caused by these treatments; however, risk factors for the ILD have not yet been established. Interstitial lung abnormalities (ILAs) are computed tomography (CT) findings which manifest as minor interstitial shadows. We aimed to investigate whether ILAs could be risk factors for grade-two or higher ILD during durvalumab therapy. Patients and Methods: Patients with NSCLC who received durvalumab after CRT from July 2018 to June 2021 were retrospectively enrolled. We obtained patient characteristics, laboratory data, radiotherapeutic parameters, and chest CT findings before durvalumab therapy. Results: A total of 148 patients were enrolled. The prevalence of ILAs before durvalumab treatment was 37.8%. Among 148 patients, 63.5% developed ILD during durvalumab therapy. The proportion of patients with grade-two or higher ILD was 33.8%. The univariate logistic regression analysis revealed that older age, high dose-volume histogram parameters, and the presence of ILAs were significant risk factors for grade-two or higher ILD. The multivariate analysis showed that ILAs were independent risk factors for grade-two or higher ILD (odds ratio, 3.70; 95% confidence interval, 1.69–7.72; p < 0.001). Conclusions: We showed that pre-existing ILAs are risk factors for ILD during durvalumab treatment after CRT. We should pay attention to the development of grade-two or higher ILD during durvalumab treatment in patients with ILAs

    Characterization of the room temperature payload prototype for the cryogenic interferometric gravitational wave detector KAGRA

    No full text
    KAGRA is a cryogenic interferometric gravitational wave detector currently under construction in the Kamioka mine in Japan. Besides the cryogenic test masses, KAGRA will also rely on room temperature optics which will hang at the bottom of vibration isolation chains. The payload of each chain comprises an optic, a system to align it, and an active feedback system to damp the resonant motion of the suspension itself. This article describes the performance of a payload prototype that was assembled and tested in vacuum at the TAMA300 site at the NAOJ in Mitaka, Tokyo. We describe the mechanical components of the payload prototype and their functionality. A description of the active components of the feedback system and their capabilities is also given. The performance of the active system is illustrated by measuring the quality factors of some of the resonances of the suspension. Finally, the alignment capabilities offered by the payload are reported
    corecore