469 research outputs found
AdS/QCD Phenomenological Models from a Back-Reacted Geometry
We construct a fully back-reacted holographic dual of a four-dimensional
field theory which exhibits chiral symmetry breaking. Two possible models are
considered by studying the effects of a five-dimensional field, dual to the
operator. One model has smooth geometry at all radii and the other
dynamically generates a cutoff at finite radius. Both of these models satisfy
Einstein's field equations. The second model has only three free parameters, as
in QCD, and we show that this gives phenomenologically consistent results. We
also discuss the possibility that in order to obtain linear confinement from a
back-reacted model it may be necessary to consider the condensate of a
dimension two operator.Comment: 13 pages, 4 figures, Replaced with minor correction
Canonical Coordinates and Meson Spectra for Scalar Deformed N=4 SYM from the AdS/CFT Correspondence
Five supersymmetric scalar deformations of the AdS_5xS^5 geometry are
investigated. By switching on condensates for the scalars in the N=4 multiplet
with a form which preserves a subgroup of the original R-symmetry, disk and
sphere configurations of D3-branes are formed in the dual supergravity
background. The analytic, canonical metric for each geometry is formulated and
the singularity structure is studied. Quarks are introduced into two of the
corresponding field theories using D7-brane probes and the pseudoscalar meson
spectrum is calculated. For one of the condensate configurations, a mass gap is
found and shown analytically to be present in the massless limit. It is also
found that there is a stepped spectrum with eigenstate degeneracy in the limit
of small quark masses. In the case of a second, similar deformation, it is
necessary to understand the full D3-D7 brane interaction to study the limit of
small quark masses. It is seen that simple solutions to the equations of motion
for the other three geometries are unlikely to exist.Comment: 16 pages, 7 figures, references added, typos correcte
Three Flavour QCD from the Holographic Principle
Building on recent research into five-dimensional holographic models of QCD,
we extend this work by including the strange quark with an SU(3)_L\times
SU(3)_R gauge symmetry in the five-dimensional theory. In addition we deform
the naive metric with a single parameter, thereby breaking the conformal
symmetry at low energies. The vector and axial vector sectors are studied in
detail and both the masses and decay constants are calculated with the
additional parameters. It is shown that with a single extra degree of freedom,
exceptional agreement with experimental results can be obtained in the light
quark sector while the kaon sector is found to give around 10% agreement with
lattice results. We propose some simple extensions to this work to be taken up
in future research.Comment: 9 pages, 1 figure, references adde
A note on conductivity and charge diffusion in holographic flavour systems
We analyze the charge diffusion and conductivity in a Dp/Dq holographic setup
that is dual to a supersymmetric Yang-Mills theory in p+1 dimensions with N_f<<
N_c flavour degrees of freedom at finite temperature and nonvanishing U(1)
baryon number chemical potential. We provide a new derivation of the results
that generalize the membrane paradigm to the present context. We perform a
numerical analysis in the particular case of the D3/D7 flavor system. The
results obtained support the validity of the Einstein relation at finite
chemical potential.Comment: 15 pages, 3 figures, v2 with minor correction
Chiral phase transitions and quantum critical points of the D3/D7(D5) system with mutually perpendicular E and B fields at finite temperature and density
We study chiral symmetry restoration with increasing temperature and density
in gauge theories subject to mutually perpendicular electric and magnetic
fields using holography. We determine the chiral symmetry breaking phase
structure of the D3/D7 and D3/D5 systems in the temperature-density-electric
field directions. A magnetic field may break the chiral symmetry and an
additional electric field induces Ohm and Hall currents as well as restoring
the chiral symmetry. At zero temperature the D3/D5 system displays a line of
holographic BKT phase transitions in the density-electric field plane, while
the D3/D7 system shows a mean-field phase transition. At intermediate
temperatures, the transitions in the density-electric field plane are of first
order at low density, transforming to second order at critical points as
density rises. At high temperature the transition is only ever first order.Comment: 15 pages, 7 figures, v2: Added a referenc
Linear square-mass trajectories of radially and orbitally excited hadrons in holographic QCD
We consider a new approach towards constructing approximate holographic duals
of QCD from experimental hadron properties. This framework allows us to derive
a gravity dual which reproduces the empirically found linear square-mass
trajectories of universal slope for radially and orbitally excited hadrons.
Conformal symmetry breaking in the bulk is exclusively due to infrared
deformations of the anti-de Sitter metric and governed by one free mass scale
proportional to Lambda_QCD. The resulting background geometry exhibits dual
signatures of confinement and provides the first examples of holographically
generated linear trajectories in the baryon sector. The predictions for the
light hadron spectrum include new relations between trajectory slopes and
ground state masses and are in good overall agreement with experiment.Comment: 33 pages, 5 figures, updated to the extended version published in
JHEP, vector meson bulk potential and metric corrected, comments and
references added, phenomenology and conclusions unchange
Challenges facing holographic models of QCD
This paper, written in memory of Manoj Banerjee, takes a critical look at
holographic models of QCD focusing on ``practical'' models in which the five
dimensional theory is treated classically. A number of theoretical and
phenomenological challenges to the approach are discussed.Comment: This paper was written for an issue in memory of Manoj Banerjee in
the Indian Journal of Physic
Universal Holographic Chiral Dynamics in an External Magnetic Field
In this work we further extend the investigation of holographic gauge
theories in external magnetic fields, continuing earlier work. We study the
phenomenon of magnetic catalysis of mass generation in 1+3 and 1+2 dimensions,
using D3/D7- and D3/D5-brane systems, respectively. We obtain the low energy
effective actions of the corresponding pseudo Goldstone bosons and study their
dispersion relations. The D3/D7 system exhibits the usual
Gell-Mann--Oakes--Renner (GMOR) relation and a relativistic dispersion
relation, while the D3/D5 system exhibits a quadratic non-relativistic
dispersion relation and a modified linear GMOR relation. The low energy
effective action of the D3/D5 system is related to that describing magnon
excitations in a ferromagnet. We also study properties of general Dp/Dq systems
in an external magnetic field and verify the universality of the magnetic
catalysis of dynamical symmetry breaking.Comment: 41 pages, 11 figures, references adde
AdS/CFT with Flavour in Electric and Magnetic Kalb-Ramond Fields
We investigate gauge/gravity duals with flavour for which pure-gauge
Kalb-Ramond B fields are turned on in the background, into which a D7 brane
probe is embedded. First we consider the case of a magnetic field in two of the
spatial boundary directions. We show that at finite temperature, i.e. in the
AdS-Schwarzschild background, the B field has a stabilizing effect on the
mesons and chiral symmetry breaking occurs for a sufficiently large value of
the B field. Then we turn to the electric case of a B field in the temporal
direction and one spatial boundary direction. In this case, there is a singular
region in which it is necessary to turn on a gauge field on the brane in order
to ensure reality of the brane action. We find that the brane embeddings are
attracted towards this region. Far away from this region, in the weak field
case at zero temperature, we investigate the meson spectrum and find a mass
shift similar to the Stark effect.Comment: 34 pages, 18 figures, v2: added references and comments on mode
decoupling, on thermodynamics and holographic renormalisation, JHEP style,
v3: Final published versio
High pH microbial ecosystems in a newly discovered, ephemeral, serpentinizing fluid seep at YanartaÅŸ (Chimera), Turkey
Gas seeps emanating from ophiolites at Yanartaş (Chimaera), Turkey, have been documented for thousands of years. Active serpentinization produces hydrogen and a range of carbon gases that may provide fuel for life. Here we report a newly discovered, ephemeral fluid seep emanating from a small gas vent at Yanartaş. Fluids and biofilms were sampled at the source and points downstream. We describe site conditions, and provide microbiological data in the form of enrichment cultures, scanning electron microscopy (SEM), carbon and nitrogen isotopic composition of solids, and PCR screens of nitrogen cycle genes. Source fluids are pH 11.95, with a Ca:Mg of ~200, and sediments under the ignited gas seep measure 60°C. Collectively, these data suggest the fluid is the product of active serpentinization at depth. Source sediments are primarily calcite and alteration products (chlorite and montmorillonite). Downstream, biofilms are mixed with montmorillonite. SEM shows biofilms distributed homogeneously with carbonates. Organic carbon accounts for 60% of the total carbon at the source, decreasing downstream to <15% as inorganic carbon precipitates. δ13C ratios of the organic carbon fraction of solids are depleted (−25 to −28 ‰) relative to the carbonates (−11 to −20‰). We conclude that heterotrophic processes are dominant throughout the surface ecosystem, and carbon fixation may be key down channel. δ15N ratios ~ 3‰, and absence of nifH in extracted DNA suggest that nitrogen fixation is not occurring in sediments. However, the presence of narG and nirS at most locations and in enrichments indicates genomic potential for nitrate and nitrite reduction. This small seep with shallow run-off is likely ephemeral, but abundant preserved microterracettes in the outflow and the surrounding area suggest it has been present for some time. This site and others like it present an opportunity for investigations of preserved deep biosphere signatures, and subsurface-surface interactions
- …