Chiral phase transitions and quantum critical points of the D3/D7(D5)
system with mutually perpendicular E and B fields at finite temperature and
density
We study chiral symmetry restoration with increasing temperature and density
in gauge theories subject to mutually perpendicular electric and magnetic
fields using holography. We determine the chiral symmetry breaking phase
structure of the D3/D7 and D3/D5 systems in the temperature-density-electric
field directions. A magnetic field may break the chiral symmetry and an
additional electric field induces Ohm and Hall currents as well as restoring
the chiral symmetry. At zero temperature the D3/D5 system displays a line of
holographic BKT phase transitions in the density-electric field plane, while
the D3/D7 system shows a mean-field phase transition. At intermediate
temperatures, the transitions in the density-electric field plane are of first
order at low density, transforming to second order at critical points as
density rises. At high temperature the transition is only ever first order.Comment: 15 pages, 7 figures, v2: Added a referenc