168 research outputs found

    Energy Calibration of b-Quark Jets with Z->b-bbar Decays at the Tevatron Collider

    Full text link
    The energy measurement of jets produced by b-quarks at hadron colliders suffers from biases due to the peculiarities of the hadronization and decay of the originating B hadron. The impact of these effects can be estimated by reconstructing the mass of Z boson decays into pairs of b-quark jets. From a sample of 584 pb-1 of data collected by the CDF experiment in 1.96 TeV proton-antiproton collisions at the Tevatron collider, we show how the Z signal can be identified and measured. Using the reconstructed mass of Z candidates we determine a jet energy scale factor for b-quark jets with a precision better than 2%. This measurement allows a reduction of one of the dominant source of uncertainty in analyses based on high transverse momentum b-quark jets. We also determine, as a cross-check of our analysis, the Z boson cross section in hadronic collisions using the b-bbar final state as sigma x B(Z->b-bbar) = 1578 +636 -410 pb.Comment: 35 pages, 9 figures, submitted to Nuclear Instruments and Methods in Physics Research Section

    Proton-Antiproton Collider Physics

    Full text link
    Summary of the 10th Topical Workshop on Proton-Antiproton Collider Physics, Fermilab, May 9-13, 1995.Comment: Summary of the 10th Topical Workshop on Proton-Antiproton Collider Physics, Fermilab, May 9-13, 1995. Postscript file (34 pages with 82 embedded figures; 5.7 MB) available at http://www-cdf.fnal.gov/physics/conf95/cdf3225_pbarp_wkshp_summary.p

    Measurement of charged-particle multiplicities in gluon and quark jets in p(p)over-bar collisions at root s=1.8 TeV

    Get PDF
    We report the first largely model independent measurement of charged particle multiplicities in quark and gluon jets, N-q and N-g, produced at the Fermilab Tevatron in p (p) over bar collisions with a center-of-mass energy of 1.8 TeV and recorded by the Collider Detector at Fermilab. The measurements are made for jets with average energies of 41 and 53 GeV by counting charged particle tracks in cones with opening angles of θ(c)=0.28, 0.36, and 0.47 rad around the jet axis. The corresponding jet hardness Q=E-jetθ(c) varies in the range from 12 to 25 GeV. At Q=19.2 GeV, the ratio of multiplicities r=N-g/N-q is found to be 1.64± 0.17, where statistical and systematic uncertainties are added in quadrature. The results are in agreement with resummed perturbative QCD calculations
    corecore