98 research outputs found

    Effects of Post-Translational Modifications on the Structure and Stability of Human LDL

    Get PDF

    Cognitive development in children with chronic protein energy malnutrition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malnutrition is associated with both structural and functional pathology of the brain. A wide range of cognitive deficits has been reported in malnourished children. Effect of chronic protein energy malnutrition (PEM) causing stunting and wasting in children could also affect the ongoing development of higher cognitive processes during childhood (>5 years of age). The present study examined the effect of stunted growth on the rate of development of cognitive processes using neuropsychological measures.</p> <p>Methods</p> <p>Twenty children identified as malnourished and twenty as adequately nourished in the age groups of 5–7 years and 8–10 years were examined. NIMHANS neuropsychological battery for children sensitive to the effects of brain dysfunction and age related improvement was employed. The battery consisted of tests of motor speed, attention, visuospatial ability, executive functions, comprehension and learning and memory</p> <p>Results</p> <p>Development of cognitive processes appeared to be governed by both age and nutritional status. Malnourished children performed poor on tests of attention, working memory, learning and memory and visuospatial ability except on the test of motor speed and coordination. Age related improvement was not observed on tests of design fluency, working memory, visual construction, learning and memory in malnourished children. However, age related improvement was observed on tests of attention, visual perception, and verbal comprehension in malnourished children even though the performance was deficient as compared to the performance level of adequately nourished children.</p> <p>Conclusion</p> <p>Chronic protein energy malnutrition (stunting) affects the ongoing development of higher cognitive processes during childhood years rather than merely showing a generalized cognitive impairment. Stunting could result in slowing in the age related improvement in certain and not all higher order cognitive processes and may also result in long lasting cognitive impairments.</p

    Growth Patterns of Neuropsychological Functions in Indian Children

    Get PDF
    We investigated age-related differences in neuropsychological performance in 400 Indian school children (5–15 years of age). Functions of motor speed, attention, executive functions, visuospatial functions, comprehension, learning, and memory were examined. Growth curve analysis was performed. Different growth models fitted different cognitive functions. Neuropsychological task performance improved slowly between 5 and 7 years, moderately between 8 and 12 years and slowly between 13 and 15 years of age. The overall growth patterns of neuropsychological functions in Indian children have been discussed with the findings reported on American children. The present work describes non-linear, heterogeneous, and protracted age trends of neuropsychological functions in Indian children and adolescents

    New HIV Infection Estimation from Program Data of Key Populations

    Get PDF
    In India, HIV sentinel surveillance is carried out to estimate the prevalence of HIV for calibrating the response. However, estimate of new HIV infections is also needed to monitor the effectiveness of prevention strategies. We used Targeted Intervention Program data of Injecting Drug Users (IDUs) and Female Sex Workers (FSWs) enrolled in Targeted Intervention (TI) programme in Aizawl district of Mizoram state to estimate the trend in new HIV infection rate. Those who had tested HIV positive in a particular year but were negative in the previous HIV test were considered to be newly infected. New HIV infections were found to have a rising trend from 2010 to 2019 (p&lt;0.01). The new infection rate of HIV was 6.73% among IDUs and 1.94% among FSWs in 2019. This analysis, which requires minimal resources, may be undertaken at regular interval in all Targeted Intervention Programs to monitor the effect of preventive strategies at local level

    Temporal dynamics of the default mode network characterise meditation induced alterations in consciousness

    Get PDF
    Current research suggests that human consciousness is associated with complex, synchronous interactions between multiple cortical networks. In particular, the default mode network (DMN) of the resting brain is thought to be altered by changes in consciousness, including the meditative state. However, it remains unclear how meditation alters the fast and ever-changing dynamics of brain activity within this network. Here we addressed this question using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to compare the spatial extents and temporal dynamics of the DMN during rest and meditation. Using fMRI, we identified key reductions in the posterior cingulate hub of the DMN, along with increases in right frontal and left temporal areas, in experienced meditators during rest and during meditation, in comparison to healthy controls (HCs). We employed the simultaneously recorded EEG data to identify the topographical microstate corresponding to activation of the DMN. Analysis of the temporal dynamics of this microstate revealed that the average duration and frequency of occurrence of DMN microstate was higher in meditators compared to HCs. Both these temporal parameters increased during meditation, reflecting the state effect of meditation. In particular, we found that the alteration in the duration of the DMN microstate when meditators entered the meditative state correlated negatively with their years of meditation experience. This reflected a trait effect of meditation, highlighting its role in producing durable changes in temporal dynamics of the DMN. Taken together, these findings shed new light on short and long-term consequences of meditation practice on this key brain network
    corecore