17 research outputs found

    頭頸部癌細胞におけるレスベラトロールのREG III発現誘導効果と癌の進展抑制・治療向上効果

    Get PDF
    Identification of reliable markers of chemo- and radiosensitivity and the key molecules that enhance the susceptibility of head and neck squamous cell carcinoma (HNSCC) to anticancer treatments is highly desirable. Previously, we have reported that regenerating gene (REG) Ⅲ expression was such a marker associated with an improved survival rate for HNSCC patients. In the present study, we investigated the stimulators for induction of REG Ⅲ expression using REG Ⅲ promoter assay in HNSCC cells transfected with REG Ⅲ promoter vector. We tested inflammatory cytokines, growth factors, polyphenols, PPARγ activator of thiazolidinediones, and histone deacetylase inhibitors, and found that 3,4',5-trihydroxy-trans-stilbene (resveratrol) significantly increased the REG Ⅲ promoter activity and the mRNA levels of REG Ⅲ in HNSCC cells. Moreover, we demonstrated the effect of resveratrol on cancer cell progression, such as cell proliferation, chemo‑ and radiosensitivity and cancer invasion of HNSCC cells. Resveratrol significantly inhibited cell growth, enhanced chemo‑ and radiosensitivity, and blocked cancer invasion of HNSCC cells. These data suggested that resveratrol could inhibit cancer progression through the REG Ⅲ expression pathway in HNSCC cells.博士(医学)・甲第682号・平成30年3月15日Copyright © Spandidos Publications 2017. All rights reserved.The Spandidos Publications link is available at " https://doi.org/10.3892/ijo.2016.3664

    間欺的低酸素はヒト神経細胞においてGATA転写因子を介してPOMCとCARTのmRNAを増加させる

    Get PDF
    Sleep apnea syndrome (SAS) is characterized by intermittent hypoxia (IH) during sleep. SAS and obesity are strongly related to each other. Here, we investigated the effect of IH on the expression of major appetite regulatory genes in human neuronal cells. We exposed NB-1, SH-SY5Y, and SK-N-SH human neuronal cells to IH (64 cycles of 5 min hypoxia and 10 min normoxia), normoxia, or sustained hypoxia for 24 h and measured the mRNA levels of proopiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), galanin, galanin-like peptide, ghrelin, pyroglutamylated RFamide peptide, agouti-related peptide, neuropeptide Y, and melanocortin 4 receptor by real-time RT-PCR. IH significantly increased the mRNA levels of POMC and CART in all the neuronal cells. Deletion analysis revealed that the -705 to -686 promoter region of POMC and the -950 to -929 region of CART were essential for the IH-induced promoter activity. As possible GATA factor binding sequences were found in the two regions, we performed real-time RT-PCR to determine which GATA family members were expressed and found that GATA2 and GATA3 mRNAs were predominantly expressed. Therefore, we introduced siRNAs against GATA2 and GATA3 into NB-1 cells and found that GATA2 and GATA3 siRNAs abolished the IH-induced up-regulation of both POMC and CART mRNAs. These results indicate that IH stress up-regulates the mRNA levels of anorexigenic peptides, POMC and CART, in human neuronal cells via GATA2 and GATA3. IH can have an anorexigenic effect on SAS patients through the transcriptional activation of POMC and CART in the central nervous system.博士(医学)・甲第685号・平成30年6月27日© 2017 Elsevier Ltd. All rights reserved

    炎症性腸疾患におけるREG遺伝子ファミリーの発現と制御

    Get PDF
    The pathophysiology of inflammatory bowel disease (IBD) reflects a balance between mucosal injury and reparative mechanisms. Some regenerating gene (Reg) family members have been reported to be expressed in Crohn's disease (CD) and ulcerative colitis (UC) and to be involved as proliferative mucosal factors in IBD. However, expression of all REG family genes in IBD is still unclear. Here, we analyzed expression of all REG family genes (REG Iα, REG Iβ, REG III, HIP/PAP, and REG IV) in biopsy specimens of UC and CD by real-time RT-PCR. REG Iα, REG Iβ, and REG IV genes were overexpressed in CD samples. REG IV gene was also overexpressed in UC samples. We further analyzed the expression mechanisms of REG Iα, REG Iβ, and REG IV genes in human colon cells. The expression of REG Iα was significantly induced by IL-6 or IL-22, and REG Iβ was induced by IL-22. Deletion analyses revealed that three regions (- 220 to - 211, - 179 to - 156, and - 146 to - 130) in REG Iα and the region (- 274 to- 260) in REG Iβ promoter were responsible for the activation by IL-22/IL-6. The promoters contain consensus transcription factor binding sequences for MZF1, RTEF1/TEAD4, and STAT3 in REG Iα, and HLTF/FOXN2F in REG Iβ, respectively. The introduction of siRNAs for MZF1, RTEF1/TEAD4, STAT3, and HLTF/FOXN2F abolished the transcription of REG Iα and REG Iβ. The gene activation mechanisms of REG Iα/REG Iβ may play a role in colon mucosal regeneration in IBD.博士(医学)・乙第1438号・令和元年9月27日© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/)

    Expression of REG family genes in human inflammatory bowel diseases and its regulation

    Get PDF
    The pathophysiology of inflammatory bowel disease (IBD) reflects a balance between mucosal injury and reparative mechanisms. Some regenerating gene (Reg) family members have been reported to be expressed in Crohn's disease (CD) and ulcerative colitis (UC) and to be involved as proliferative mucosal factors in IBD. However, expression of all REG family genes in IBD is still unclear. Here, we analyzed expression of all REG family genes (REG Iα, REG Iβ, REG III, HIP/PAP, and REG IV) in biopsy specimens of UC and CD by real-time RT-PCR. REG Iα, REG Iβ, and REG IV genes were overexpressed in CD samples. REG IV gene was also overexpressed in UC samples. We further analyzed the expression mechanisms of REG Iα, REG Iβ, and REG IV genes in human colon cells. The expression of REG Iα was significantly induced by IL-6 or IL-22, and REG Iβ was induced by IL-22. Deletion analyses revealed that three regions (− 220 to − 211, − 179 to − 156, and − 146 to − 130) in REG Iα and the region (− 274 to− 260) in REG Iβ promoter were responsible for the activation by IL-22/IL-6. The promoters contain consensus transcription factor binding sequences for MZF1, RTEF1/TEAD4, and STAT3 in REG Iα, and HLTF/FOXN2F in REG Iβ, respectively. The introduction of siRNAs for MZF1, RTEF1/TEAD4, STAT3, and HLTF/FOXN2F abolished the transcription of REG Iα and REG Iβ. The gene activation mechanisms of REG Iα/REG Iβ may play a role in colon mucosal regeneration in IBD

    急性期虚血性脳卒中患者から機械的血栓回収術で得られた血栓の年齢と組成は血栓回収術転帰および臨床転帰と関連していた

    Get PDF
    Introduction: Understanding the composition of stroke thrombi retrieved by mechanical thrombectomy is essential to clarify the pathogenesis of stroke. However, it is difficult to evaluate thrombus composition precisely and objectively. Immunohistochemical staining was used to evaluate thrombus composition and age. Materials and methods: Consecutive thrombi (n = 108) retrieved from patients who underwent mechanical thrombectomy for acute large-vessel ischemic stroke were retrospectively analyzed. Lytic features of granulocytes and CD163 were estimated as indicators of the age of the cardioembolic (CE) thrombus. Results: The stroke subtypes were as follows: CE, 74 cases; large artery atherosclerosis, 11; undetermined etiology, 12; and other determined etiology, 11. There were no statistical differences in thrombi composition according to stroke subtypes. The fibrin area was positively correlated with the red blood cell (RBC) and platelet areas. The following analysis was performed using CE only. Regarding age, the thrombus was judged as fresh in 30.0 % and older in 70.0 % based on the lytic features. The RBC areas of older thrombi were smaller than those of fresh thrombi. The puncture-to-reperfusion time of older thrombi was longer than that of fresh thrombi. Platelet-rich thrombi were associated with a greater number of maneuvers, a smaller prevalence of TICI 3, and unfavorable functional outcomes compared to platelet-poor thrombi. The number of CD163 positive cells in thrombi with anticoagulants was higher than in those without anticoagulants. Conclusion: Thrombus composition correlated with revascularization and clinical outcomes. The composition of an acute ischemic thrombus may reflect the pathophysiology of stroke and influence treatment efficacy.博士(医学)・甲第855号・令和4年12月22日Copyright © 2022 Elsevier Ltd. All rights reserved

    The Impact of Intermittent Hypoxia on Metabolism and Cognition

    No full text
    Intermittent hypoxia (IH), one of the primary pathologies of sleep apnea syndrome (SAS), exposes cells throughout the body to repeated cycles of hypoxia/normoxia that result in oxidative stress and systemic inflammation. Since SAS is epidemiologically strongly correlated with type 2 diabetes/insulin resistance, obesity, hypertension, and dyslipidemia included in metabolic syndrome, the effects of IH on gene expression in the corresponding cells of each organ have been studied intensively to clarify the molecular mechanism of the association between SAS and metabolic syndrome. Dementia has recently been recognized as a serious health problem due to its increasing incidence, and a large body of evidence has shown its strong correlation with SAS and metabolic disorders. In this narrative review, we first outline the effects of IH on the expression of genes related to metabolism in neuronal cells, pancreatic β cells, hepatocytes, adipocytes, myocytes, and renal cells (mainly based on the results of our experiments). Next, we discuss the literature regarding the mechanisms by which metabolic disorders and IH develop dementia to understand how IH directly and indirectly leads to the development of dementia

    Anorexigenic Effects of Intermittent Hypoxia on the Gut—Brain Axis in Sleep Apnea Syndrome

    No full text
    Sleep apnea syndrome (SAS) is a breathing disorder characterized by recurrent episodes of upper-airway collapse, resulting in intermittent hypoxia (IH) during sleep. Experimental studies with animals and cellular models have indicated that IH leads to attenuation of glucose-induced insulin secretion from pancreatic β cells and to enhancement of insulin resistance in peripheral tissues and cells, such as the liver (hepatocytes), adipose tissue (adipocytes), and skeletal muscles (myocytes), both of which could lead to obesity. Although obesity is widely recognized as a major factor in SAS, it is controversial whether the development of SAS could contribute directly to obesity, and the effect of IH on the expression of appetite regulatory genes remains elusive. Appetite is regulated appropriately by both the hypothalamus and the gut as a gut–brain axis driven by differential neural and hormonal signals. In this review, we summarized the recent epidemiological findings on the relationship between SAS and feeding behavior and focused on the anorexigenic effects of IH on the gut–brain axis by the IH-induced up-regulation of proopiomelanocortin and cocaine- and amphetamine-regulated transcript in neuronal cells and the IH-induced up-regulation of peptide YY, glucagon-like peptide-1 and neurotensin in enteroendocrine cells and their molecular mechanisms

    Reg Gene Expression in Periosteum after Fracture and Its In Vitro Induction Triggered by IL-6

    No full text
    The periosteum is a thin membrane that surrounds the outer surface of bones and participates in fracture healing. However, the molecular signals that trigger/initiate the periosteal reaction are not well established. We fractured the rat femoral bone at the diaphysis and fixed it with an intramedullary inserted wire, and the expression of regenerating gene (Reg) I, which encodes a tissue regeneration/growth factor, was analyzed. Neither bone/marrow nor muscle showed Reg I gene expression before or after the fracture. By contrast, the periosteum showed an elevated expression after the fracture, thereby confirming the localization of Reg I expression exclusively in the periosteum around the fractured areas. Expression of the Reg family increased after the fracture, followed by a decrease to basal levels by six weeks, when the fracture had almost healed. In vitro cultures of periosteal cells showed no Reg I expression, but the addition of IL-6 significantly induced Reg I gene expression. The addition of IL-6 also increased the cell number and reduced pro-apoptotic gene expression of Bim. The increased cell proliferation and reduction in Bim gene expression were abolished by transfection with Reg I siRNA, indicating that these IL-6-dependent effects require the Reg I gene expression. These results indicate the involvement of the IL-6/Reg pathway in the osteogenic response of the periosteum, which leads to fracture repair

    Downregulation of the Cd38-Cyclic ADP-Ribose Signaling in Cardiomyocytes by Intermittent Hypoxia via Pten Upregulation

    No full text
    Sleep apnea syndrome (SAS) is characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia, IH), and it is a risk factor for cardiovascular disease (CVD) and insulin resistance/type 2 diabetes. However, the mechanisms linking IH stress and CVD remain elusive. We exposed rat H9c2 and mouse P19.CL6 cardiomyocytes to experimental IH or normoxia for 24 h to analyze the mRNA expression of the components of Cd38-cyclic ADP-ribose (cADPR) signaling. We found that the mRNA levels of cluster of differentiation 38 (Cd38), type 2 ryanodine receptor (Ryr2), and FK506-binding protein 12.6 (Fkbp12.6) in H9c2 and P19.CL6 cardiomyocytes were significantly decreased by IH, whereas the promoter activities of these genes were not decreased. By contrast, the expression of phosphatase and tensin homolog deleted from chromosome 10 (Pten) was upregulated in IH-treated cells. The small interfering RNA for Pten (siPten) and a non-specific control RNA were introduced into the H9c2 cells. The IH-induced downregulation of Cd38, Ryr2, and Fkbp12.6 was abolished by the introduction of the siPten, but not by the control RNA. These results indicate that IH stress upregulated the Pten in cardiomyocytes, resulting in the decreased mRNA levels of Cd38, Ryr2, and Fkbp12.6, leading to the inhibition of cardiomyocyte functions in SAS patients
    corecore