460 research outputs found

    Class C Orphans in GtoPdb v.2023.1

    Get PDF
    This set contains class C 'orphan' G protein coupled receptors where the endogenous ligand(s) is not known

    Class C Orphans (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    This set contains class C 'orphan' G protein coupled receptors where the endogenous ligand(s) is not known

    Recombinant Human Parathyroid Hormone Effect on Health-Related Quality of Life in Adults With Chronic Hypoparathyroidism

    Get PDF
    Context: Reduced health-related quality of life (HRQoL) is common in patients with hypoparathyroidism on conventional therapy with calcium and active vitamin D supplements. Objective: To examine the effects of recombinant human parathyroid hormone (rhPTH[1-84]) on HRQoL as measured by the 36-Item Short Form Health Survey (SF-36) during the multinational, randomized, placebo-controlled REPLACE study. Patients: 122 adults with chronic hypoparathyroidism. Intervention(s): Following an optimization period when calcium and/or active vitamin D supplements were adjusted to reach target serum calcium levels (8.0-9.0 mg/dL; 2.0-2.2 mmol/L), patients were randomized to receive placebo (n=39) or rhPTH(1-84) (n=83) (starting dose 50 mug/day, could be titrated up to 100 mug/day); supplement doses were adjusted to maintain target serum calcium levels. Main Outcome Measure(s): Change from baseline (post-optimization, at randomization) to Week 24 in HRQoL as assessed by the SF-36v2 health survey. Results: Overall, the between-group differences were not statistically significant. However, in the rhPTH(1-84) group, there were significant improvements in the physical component summary score (P=0.004) and in body pain (P<0.05), general health (P<0.05), and vitality (P<0.001) domains as compared with baseline values. In the placebo group, there were no significant changes for any of the domains. The magnitude of change between 0 and 24 weeks in SF-36 scores was negatively correlated with baseline scores, such that patients with lower HRQoL at baseline were more likely to experience improvement in response to treatment. Conclusions: Treatment with rhPTH(1-84) may improve HRQoL in adults with hypoparathyroidism

    Calcium-sensing receptor (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The calcium-sensing receptor (CaS, provisional nomenclature as recommended by NC-IUPHAR [44]) responds to multiple endogenous ligands, including extracellular calcium and other divalent/trivalent cations, polyamines and polycationic peptides, L-amino acids (particularly L-Trp and L-Phe), glutathione and various peptide analogues, ionic strength and extracellular pH (reviewed in [74]). While divalent/trivalent cations, polyamines and polycations are CaS receptor agonists [14, 106], L-amino acids, glutamyl peptides, ionic strength and pH are allosteric modulators of agonist function [34, 44, 58, 104, 105]. Indeed, L-amino acids have been identified as "co-agonists", with both concomitant calcium and L-amino acid binding required for full receptor activation [143, 51]. The sensitivity of the CaS receptor to primary agonists is increased by elevated extracellular pH [17] or decreased extracellular ionic strength [105]. This receptor bears no sequence or structural relation to the plant calcium receptor, also called CaS

    Calcium-sensing receptor in GtoPdb v.2023.1

    Get PDF
    The calcium-sensing receptor (CaS, provisional nomenclature as recommended by NC-IUPHAR [47] and subsequently updated [77]) responds to multiple endogenous ligands, including extracellular calcium and other divalent/trivalent cations, polyamines and polycationic peptides, L-amino acids (particularly L-Trp and L-Phe), glutathione and various peptide analogues, ionic strength and extracellular pH (reviewed in [78]). While divalent/trivalent cations, polyamines and polycations are CaS receptor agonists [14, 110], L-amino acids, glutamyl peptides, ionic strength and pH are allosteric modulators of agonist function [36, 47, 61, 108, 109]. Indeed, L-amino acids have been identified as "co-agonists", with both concomitant calcium and L-amino acid binding required for full receptor activation [149, 54]. The sensitivity of the CaS receptor to primary agonists is increased by elevated extracellular pH [18] or decreased extracellular ionic strength [109] while sensitivity is decreased by pathophysiological phosphate concentrations [20]. This receptor bears no sequence or structural relation to the plant calcium receptor, also called CaS

    Calcium-sensing receptor in GtoPdb v.2021.3

    Get PDF
    The calcium-sensing receptor (CaS, provisional nomenclature as recommended by NC-IUPHAR [47] and subsequently updated [77]) responds to multiple endogenous ligands, including extracellular calcium and other divalent/trivalent cations, polyamines and polycationic peptides, L-amino acids (particularly L-Trp and L-Phe), glutathione and various peptide analogues, ionic strength and extracellular pH (reviewed in [78]). While divalent/trivalent cations, polyamines and polycations are CaS receptor agonists [14, 110], L-amino acids, glutamyl peptides, ionic strength and pH are allosteric modulators of agonist function [36, 47, 61, 108, 109]. Indeed, L-amino acids have been identified as "co-agonists", with both concomitant calcium and L-amino acid binding required for full receptor activation [148, 54]. The sensitivity of the CaS receptor to primary agonists is increased by elevated extracellular pH [18] or decreased extracellular ionic strength [109]. This receptor bears no sequence or structural relation to the plant calcium receptor, also called CaS

    Calcium-sensing receptor (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The calcium-sensing receptor (CaS, provisional nomenclature as recommended by NC-IUPHAR [46] and subsequently updated [76]) responds to multiple endogenous ligands, including extracellular calcium and other divalent/trivalent cations, polyamines and polycationic peptides, L-amino acids (particularly L-Trp and L-Phe), glutathione and various peptide analogues, ionic strength and extracellular pH (reviewed in [77]). While divalent/trivalent cations, polyamines and polycations are CaS receptor agonists [14, 109], L-amino acids, glutamyl peptides, ionic strength and pH are allosteric modulators of agonist function [35, 46, 60, 107, 108]. Indeed, L-amino acids have been identified as "co-agonists", with both concomitant calcium and L-amino acid binding required for full receptor activation [147, 53]. The sensitivity of the CaS receptor to primary agonists is increased by elevated extracellular pH [17] or decreased extracellular ionic strength [108]. This receptor bears no sequence or structural relation to the plant calcium receptor, also called CaS
    • …
    corecore