5 research outputs found

    Neuronal correlates of encoding and retrieval in episodic memory during a paired-word association learning task : a functional magnetic resonance imaging study

    Get PDF
    The investigation of memory function using functional magnetic resonance imaging (fMRI) is an expanding field of research. The aim of this study was to demonstrate brain-activity patterns related to a word-pair association task employing a whole-brain EPI sequence. Six right-handed, healthy male volunteers (mean age: 27.5 years) took part in the study. fMRI was performed at a field strength of 1.5 Tesla with 26–32 slices parallel to the AC-PC line, depending on individual brain size. Distributed brain regions were activated in episodic encoding and retrieval with similarities, but also (distinct) differences in activation patterns. Bilateral prefrontal cortical areas were involved when comparing encoding as well as retrieval to the reference condition (nonsense words). Furthermore, activation was observed in cerebellar areas during encoding, and activation in bilateral parietal areas (precuneus and inferior parietal cortex) was differentially more pronounced during retrieval. The activation of left dorsomedial thalamus during retrieval of high imagery-content word-pair associates may point to the role of this structure in episodic retrieval. The direct cognitive subtraction of encoding minus retrieval yielded a differentially larger left prefrontal activation. There was a differentially higher right prefrontal activation during retrieval than during encoding, underlining the proposed right/left asymmetry for episodic memory processes

    Interplay between hippocampal TACR3 and systemic testosterone in regulating anxiety-associated synaptic plasticity.

    No full text
    Tachykinin receptor 3 (TACR3) is a member of the tachykinin receptor family and falls within the rhodopsin subfamily. As a G protein-coupled receptor, it responds to neurokinin B (NKB), its high-affinity ligand. Dysfunctional TACR3 has been associated with pubertal failure and anxiety, yet the mechanisms underlying this remain unclear. Hence, we have investigated the relationship between TACR3 expression, anxiety, sex hormones, and synaptic plasticity in a rat model, which indicated that severe anxiety is linked to dampened TACR3 expression in the ventral hippocampus. TACR3 expression in female rats fluctuates during the estrous cycle, reflecting sensitivity to sex hormones. Indeed, in males, sexual development is associated with a substantial increase in hippocampal TACR3 expression, coinciding with elevated serum testosterone and a significant reduction in anxiety. TACR3 is predominantly expressed in the cell membrane, including the presynaptic compartment, and its modulation significantly influences synaptic activity. Inhibition of TACR3 activity provokes hyperactivation of CaMKII and enhanced AMPA receptor phosphorylation, associated with an increase in spine density. Using a multielectrode array, stronger cross-correlation of firing was evident among neurons following TACR3 inhibition, indicating enhanced connectivity. Deficient TACR3 activity in rats led to lower serum testosterone levels, as well as increased spine density and impaired long-term potentiation (LTP) in the dentate gyrus. Remarkably, aberrant expression of functional TACR3 in spines results in spine shrinkage and pruning, while expression of defective TACR3 increases spine density, size, and the magnitude of cross-correlation. The firing pattern in response to LTP induction was inadequate in neurons expressing defective TACR3, which could be rectified by treatment with testosterone. In conclusion, our study provides valuable insights into the intricate interplay between TACR3, sex hormones, anxiety, and synaptic plasticity. These findings highlight potential targets for therapeutic interventions to alleviate anxiety in individuals with TACR3 dysfunction and the implications of TACR3 in anxiety-related neural changes provide an avenue for future research in the field
    corecore