1,089 research outputs found

    Localization of eigenstates in a modified Tomonaga-Luttinger model

    Full text link
    We study the localization in the Hilbert space of a modified Tomonaga-Luttinger model. For the standard version of this model, the states are found to be extended in the basis of Slater determinants, representing the eigenstates of the non-interacting system. The linear dispersion which leads to the fact that these eigenstates are extended in the modified model is replaced by one with random level spacings modeling the complicated one-particle spectra of realistic models. The localization properties of the eigenstates are studied. The interactions are simplified and an effective one-dimensional Lloyd model is obtained. The effects of many-body energy correlations are studied numerically. The eigenstates of the system are found to be localized in Fock space for any strength of the interactions, but the localization is not exponential.Comment: 19 pages, 7 figure

    Virtual Frame Technique: Ultrafast Imaging with Any Camera

    Full text link
    Many phenomena of interest in nature and industry occur rapidly and are difficult and cost-prohibitive to visualize properly without specialized cameras. Here we describe in detail the Virtual Frame Technique (VFT), a simple, useful, and accessible form of compressed sensing that increases the frame acquisition rate of any camera by several orders of magnitude by leveraging its dynamic range. VFT is a powerful tool for capturing rapid phenomenon where the dynamics facilitate a transition between two states, and are thus binary. The advantages of VFT are demonstrated by examining such dynamics in five physical processes at unprecedented rates and spatial resolution: fracture of an elastic solid, wetting of a solid surface, rapid fingerprint reading, peeling of adhesive tape, and impact of an elastic hemisphere on a hard surface. We show that the performance of the VFT exceeds that of any commercial high speed camera not only in rate of imaging but also in field of view, achieving a 65MHz frame rate at 4MPx resolution. Finally, we discuss the performance of the VFT with several commercially available conventional and high-speed cameras. In principle, modern cell phones can achieve imaging rates of over a million frames per second using the VFT.Comment: 7 Pages, 4 Figures, 1 Supplementary Vide

    A model for the fragmentation kinetics of crumpled thin sheets

    Full text link
    As a confined thin sheet crumples, it spontaneously segments into flat facets delimited by a network of ridges. Despite the apparent disorder of this process, statistical properties of crumpled sheets exhibit striking reproducibility. Experiments have shown that the total crease length accrues logarithmically when repeatedly compacting and unfolding a sheet of paper. Here, we offer insight to this unexpected result by exploring the correspondence between crumpling and fragmentation processes. We identify a physical model for the evolution of facet area and ridge length distributions of crumpled sheets, and propose a mechanism for re-fragmentation driven by geometric frustration. This mechanism establishes a feedback loop in which the facet size distribution informs the subsequent rate of fragmentation under repeated confinement, thereby producing a new size distribution. We then demonstrate the capacity of this model to reproduce the characteristic logarithmic scaling of total crease length, thereby supplying a missing physical basis for the observed phenomenon.Comment: 11 pages, 7 figures (+ Supplemental Materials: 15 pages, 9 figures); introduced a simpler approximation to model, key results unchanged; added references, expanded supplementary information, corrected Fig. 2 and revised Figs. 4 and 7 for clearer presentation of result
    • …
    corecore