952 research outputs found
A new two-faced scalar solution and cosmological SUSY breaking
We propose a possible new way to resolve the long standing problem of strong
supersymmetry breaking coexisting with a small cosmological constant. We
consider a scalar component of a minimally coupled N=1 supermultiplet in a
general Friedmann-Robertson-Walker (FRW) expanding universe. We argue that a
tiny term, proportional to H^2 ~ 10^(-122) in Plank's units, appearing in the
field equations due to this expansion will provide both, the small vacuum
energy and the heavy mass of the scalar supersymmetric partner. We present a
non-perturbative solution for the scalar field with an unusual dual-frequency
behavior. This solution has two characteristic mass scales related to the
Hubble parameter as H^(1/4) and H^(1/2) measured in Plank's units.Comment: 5 pages, 5 figure
Excision of singularities by stringy domain walls
We study supersymmetric domain walls on S1/Z2 orbifolds. The supergravity solutions in the bulk are given by the attractor equation associated with Calabi–Yau (CY) spaces and have a naked space–time singularity at some |ys|. We are looking for possibilities to cut off this singularity with the second wall by a stringy mechanism. We use the collapse of the CY cycle at |yc| which happens before and at a finite distance from the space–time singularity. In our example with three Kähler moduli the second wall is at the end of the moduli space at |yc| where also the enhancement of SU(2) gauge symmetry takes place so that |ye| = |yc|1/R duality. The position of the enhançon is given by the equation R(|ye|) = 1
Supersymmetric Multiple Basin Attractors
We explain that supersymmetric attractors in general have several critical
points due to the algebraic nature of the stabilization equations. We show that
the critical values of the cosmological constant of the adS_5 vacua are given
by the topological (moduli independent) formulae analogous to the entropy of
the d=5 supersymmetric black holes. We present conditions under which more than
one critical point is available (for black hole entropy as well as to the
cosmological constant) so that the system tends to its own locally stable
attractor point. We have found several families of Z_2-symmetric critical
points where the central charge has equal absolute values but opposite signs in
two attractor points. We present examples of interpolating solutions and
discuss their generic features.Comment: 14 pages, 1 fig, JHEP, added proof of positivity of vector metric at
critical points, analysis of interpolating solutions, and ref
Freezing of Moduli by N=2 Dyons
In N=2 ungauged supergravity we have found the most general double-extreme
dyonic black holes with arbitrary number n_v of constant vector multiplets and
n_h of constant hypermultiplets. They are double-extreme: 1) supersymmetric
with coinciding horizons, 2) the mass for a given set of quantized charges is
extremal. The spacetime is of the Reissner-Nordstrom form and the vector
multiplet moduli depend on dyon charges. As an example we display n_v complex
moduli as functions of 2(n_v+1) electric and magnetic charges in a model
related to a classical Calabi-Yau moduli space. A specific case includes the
complex S, T, U moduli depending on 4 electric and 4 magnetic charges of 4 U(1)
gauge groups.Comment: 23 pages, no figures, ref. added, minor corrections, version to
appear in Phys. Rev.
Generalized Attractor Points in Gauged Supergravity
The attractor mechanism governs the near-horizon geometry of extremal black
holes in ungauged 4D N=2 supergravity theories and in Calabi-Yau
compactifications of string theory. In this paper, we study a natural
generalization of this mechanism to solutions of arbitrary 4D N=2 gauged
supergravities. We define generalized attractor points as solutions of an
ansatz which reduces the Einstein, gauge field, and scalar equations of motion
to algebraic equations. The simplest generalized attractor geometries are
characterized by non-vanishing constant anholonomy coefficients in an
orthonormal frame. Basic examples include Lifshitz and Schrodinger solutions,
as well as AdS and dS vacua. There is a generalized attractor potential whose
critical points are the attractor points, and its extremization explains the
algebraic nature of the equations governing both supersymmetric and
non-supersymmetric attractors.Comment: 31 pages, LaTeX; v2, references fixed; v3, minor changes, version to
appear in Phys. Rev.
Observation of small scale structure using sextupole lensing
Weak gravitational lensing seeks to determine shear by measuring induced
quadrupole (elliptical) shapes in background galaxy images. Small impact
parameter (a few kpc) gravitational lensing by foreground core masses between 2
10^{9} and 2 10^{12} M_\odot will additionally induce a sextupole shape with
the quadrupole and sextupole minima aligned. This correlation in relative
orientation of the quadrupole and sextupole provides a sensitive method to
identify images which have been slightly curved by lensing events. A general
theoretical framework for sextupole lensing is developed which includes several
low order coefficients in a general lensing map. Tools to impute map
coefficients from the galaxy images are described and applied to the north
Hubble deep field. Instrumental PSFs, camera charge diffusion, and image
composition methods are modelled in the coefficient determination process.
Estimates of Poisson counting noise for each galaxy are used to cut galaxies
with signals too small to reliably establish curvature. Curved galaxies are
found to be spatially clumped, as would be expected if the curving were due to
small impact parameter lensing by localized ensembles of dark matter haloes.
Simulations provide an estimate of the total required lensing mass and the
acceptable mass range of the constituent haloes. The overdensities and
underdensities of visible galaxies and their locations in the Hubble foreground
is found to be consistent with our observations and their interpretation as
lensing events.Comment: 40 pages, 44 figure
Corrections to macroscopic supersymmetric black-hole entropy
We determine the corrections to the entropy of extremal black holes arising
from terms quadratic in the Riemann tensor in supergravity theories.
We follow Wald's proposal to modify the Bekenstein-Hawking area law. The new
entropy formula, whose value only depends on the electric/magnetic charges, is
expressed in terms of a single holomorphic function and is consistent with
electric-magnetic duality. For string effective field theories arising from
Calabi-Yau compactifications, our result for the entropy of a certain class of
extremal black-hole solutions fully agrees with the counting of microstates
performed some time ago by Maldacena, Strominger, Witten and by Vafa.Comment: 9 pages, LaTeX; one reference correcte
- …
