97 research outputs found

    Quintessence Models and the Cosmological Evolution of alpha

    Full text link
    The cosmological evolution of a quintessence-like scalar field, phi, coupled to matter and gauge fields leads to effective modifications of the coupling constants and particle masses over time. We analyze a class of models where the scalar field potential V(phi) and the couplings to matter B(phi) admit common extremum in phi, as in the Damour-Polyakov ansatz. We find that even for the simplest choices of potentials and B(phi), the observational constraints on delta alpha/alpha coming from quasar absorption spectra, the Oklo phenomenon and Big Bang nucleosynthesis provide complementary constraints on the parameters of the model. We show the evolutionary history of these models in some detail and describe the effects of a varying mass for dark matter.Comment: 26 pages, 20 eps figure

    Declarative symbolic pure-logic model checking

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (p. 173-181).Model checking, a technique for findings errors in systems, involves building a formal model that describes possible system behaviors and correctness conditions, and using a tool to search for model behaviors violating correctness properties. Existing model checkers are well-suited for analyzing control-intensive algorithms (e.g. network protocols with simple node state). Many important analyses, however, fall outside the capabilities of existing model checkers. Examples include checking algorithms with complex state, distributed algorithms over all network topologies, and highly declarative models. This thesis addresses the problem of building an efficient model checker that overcomes these limitations. The work builds on Alloy, a relational modeling language. Previous work has defined the language and shown that it can be analyzed by translation to SAT. The primary contributions of this thesis include: a modeling paradigm for describing complex structures in Alloy; significant improvements in scalability of the analyzer; and improvements in usability of the analyzer via addition of a debugger for over constraints. Together, these changes make model-checking practical for important new classes of analyses. While the work was done in the context of Alloy, some techniques generalize to other verification tools.by Ilya A. Shlyakhter.S.M

    Re/Os constraint on the time-variability of the fine-structure constant

    Full text link
    We argue that the accuracy by which the isochron parameters of the decay 187Re187Os^{187}{\rm Re}\to ^{187}{\rm Os} are determined by dating iron meteorites may not directly constrain the possible time-dependence of the decay rate and hence of the fine-structure constant α\alpha. From this point of view, some of the attempts to analyze the Oklo constraint and the results of the QSO absorption lines are re-examined.Comment: 7 pages, 3 figures; v2, revised top sentence on p.

    On The Complexity and Completeness of Static Constraints for Breaking Row and Column Symmetry

    Full text link
    We consider a common type of symmetry where we have a matrix of decision variables with interchangeable rows and columns. A simple and efficient method to deal with such row and column symmetry is to post symmetry breaking constraints like DOUBLELEX and SNAKELEX. We provide a number of positive and negative results on posting such symmetry breaking constraints. On the positive side, we prove that we can compute in polynomial time a unique representative of an equivalence class in a matrix model with row and column symmetry if the number of rows (or of columns) is bounded and in a number of other special cases. On the negative side, we show that whilst DOUBLELEX and SNAKELEX are often effective in practice, they can leave a large number of symmetric solutions in the worst case. In addition, we prove that propagating DOUBLELEX completely is NP-hard. Finally we consider how to break row, column and value symmetry, correcting a result in the literature about the safeness of combining different symmetry breaking constraints. We end with the first experimental study on how much symmetry is left by DOUBLELEX and SNAKELEX on some benchmark problems.Comment: To appear in the Proceedings of the 16th International Conference on Principles and Practice of Constraint Programming (CP 2010

    Runaway dilaton and equivalence principle violations

    Full text link
    In a recently proposed scenario, where the dilaton decouples while cosmologically attracted towards infinite bare string coupling, its residual interactions can be related to the amplitude of density fluctuations generated during inflation, and are large enough to be detectable through a modest improvement on present tests of free-fall universality. Provided it has significant couplings to either dark matter or dark energy, a runaway dilaton can also induce time-variations of the natural "constants" within the reach of near-future experiments.Comment: 4 pages, minor change

    Variable rest masses in 5-dimensional gravitation confronted with experimental data

    Full text link
    Cosmological solutions of Einstein equation for a \mbox{5-dimensional} space-time, in the case of a dust-filled universe, are presented. With these solutions we are able to test a hypothetical relation between the rest mass of a particle and the 5th5^{\rm th} dimension. Comparison with experiment strongly refutes the implied dependence of the rest mass on the cosmological time.Comment: Some references adde

    Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock

    Get PDF
    Over a two-year duration, we have compared the frequency of the 199Hg+ 5d106s 2S 1/2 (F=0) 5d9 6s2 2D 5/2 (F=2) electric-quadrupole transition at 282 nm with the frequency of the ground-state hyperfine splitting in neutral 133Cs. These measurements show that any fractional time variation of the ratio nu(Cs)/nu(Hg) between the two frequencies is smaller than +/- 7 10^-15 / yr (1 sigma uncertainty). According to recent atomic structure calculations, this sets an upper limit to a possible fractional time variation of g(Cs) m_e / m_p alpha^6.0 at the same level.Comment: 4 pages with 3 figures. RevTeX 4, Submitted to Phys. Rev. Let

    Limits on cosmological variation of quark masses and strong interaction

    Get PDF
    We discuss limits on variation of (mq/ΛQCD)(m_q/\Lambda_{QCD}). The results are obtained by studying nαn-\alpha-interaction during Big Bang, Oklo natural nuclear reactor data and limits on variation of the proton gg-factor from quasar absorpion spectra.Comment: 5 pages, RevTe

    Towards a sensitive search for variation of the fine structure constant using radio-frequency E1 transitions in atomic dysprosium

    Full text link
    It has been proposed that the radio-frequency electric-dipole (E1) transition between two nearly degenerate opposite-parity states in atomic dysprosium should be highly sensitive to possible temporal variation of the fine structure constant (α\alpha) [V. A. Dzuba, V. V. Flambaum, and J. K. Webb, Phys. Rev. A {\bf 59}, 230 (1999)]. We analyze here an experimental realization of the proposed search in progress in our laboratory, which involves monitoring the E1 transition frequency over a period of time using direct frequency counting techniques. We estimate that a statistical sensitivity of |\adota| \sim 10^{-18}/yr may be achieved and discuss possible systematic effects that may limit such a measurement.Comment: 8 pages, 7 figure
    corecore