We consider a common type of symmetry where we have a matrix of decision
variables with interchangeable rows and columns. A simple and efficient method
to deal with such row and column symmetry is to post symmetry breaking
constraints like DOUBLELEX and SNAKELEX. We provide a number of positive and
negative results on posting such symmetry breaking constraints. On the positive
side, we prove that we can compute in polynomial time a unique representative
of an equivalence class in a matrix model with row and column symmetry if the
number of rows (or of columns) is bounded and in a number of other special
cases. On the negative side, we show that whilst DOUBLELEX and SNAKELEX are
often effective in practice, they can leave a large number of symmetric
solutions in the worst case. In addition, we prove that propagating DOUBLELEX
completely is NP-hard. Finally we consider how to break row, column and value
symmetry, correcting a result in the literature about the safeness of combining
different symmetry breaking constraints. We end with the first experimental
study on how much symmetry is left by DOUBLELEX and SNAKELEX on some benchmark
problems.Comment: To appear in the Proceedings of the 16th International Conference on
Principles and Practice of Constraint Programming (CP 2010