511 research outputs found

    SMALL POLARONS IN REAL CRYSTALS - CONCEPTS AND PROBLEMS

    Get PDF
    Much of small polaron theory is based on highly idealized models, often essentially a continuum description with a single vibrational frequency. These models ignore much of the wealth of experimental data, which find interpretation in many atomistic simulations. We review here a range of properties of small polarons in real, rather than model, systems. The phenomena fall into three main classes: (i) the mechanisms and dynamics of self-trapping of polarons; (ii) static properties-the relative energies of large and small polarons, the optical transitions expected, their effect on positions of other ions and on lattice vibrations, their population in thermal equilibrium, and so on; (iii) small polaron hopping and diffusion. We discuss the key concepts and methods of calculation of polarons, and explore the properties of self-trapped holes and excitons in ionic crystals, and those of an excess electron in liquid water

    Structure and spectroscopy of surface defects from scanning force spectroscopy: theoetical predictions

    Get PDF
    A possibility to study surface defects by combining noncontact scanning force microscopy (SFM) imaging with atomically resolved optical spectroscopy is demonstrated by modeling an impurity Cr3+ ion at the MgO(001) surface with a SFM tip. Using a combination of the atomistic simulation and the ab initio electronic structure calculations, we predict a topographic noncontact SFM image of the defect and show that its optical transitions can be either enhanced or suppressed depending on the tip atomistic structure and its position relative to the defect. These effects should allow identification of certain impurity species through competition between radiative and nonradiative transitions

    The roles of charged and neutral oxidising species in silicon oxidation from ab initio calculations

    Get PDF
    We examine the roles of charged oxidising species based on extensive ab initio density functional theory calculations. Six species are considered: interstitial atomic O, O-, O2- and molecular species: O-2, O-2(-), O-2(2-) We calculate their incorporation energies into bulk silicon dioxide, vertical electron affinities and diffusion barriers. In our calculations, we assume that the electrons responsible for the change of charge state come from the silicon conduction band, however, the generalisation to any other source of electrons is possible, and hence, our results are also relevant to electron-beam assisted oxidation and plasma oxidation. The calculations yield information about the relative stability of oxidising species, and the possible transformations between them and their charging patterns. We discuss the ability to exchange O atoms between the mobile species and the host lattice during diffusion, since this determines whether or not isotope exchange is expected. Our results show very clear trends: (1) the molecular species are energetically preferable over alo,nic ones, (2) the charged species are energetically more favourable than neutral ones, (3) diffusion of atomic species (O, O-, O2-) will result in oxygen exchange, whereas the diffusion of nzoleculai species (O-2, O-2(-), O-2(2-)) is not likely to lead to a significant exchange with the lattice. On the basis of our calculation, we predict that charging of oxidising species may play a key role in silicon oxidation process. (C) 2000 Elsevier Science Ltd. All rights reserved

    The prediction of metastable impact electronic spectra (MIES): perfect and defective MgO(001) surfaces by state-of-the-art methods

    Get PDF
    We re-examine the theory of metastable impact electron spectroscopy (MIES) in its application to insulating surfaces. This suggests a quantitative approach which takes advantage of recent developments in highly efficient many-electron computational techniques. It gives a basis to the interpretation of experimental MIES spectra for perfect and defective surfaces. Our method is based on a static approach to predicting Auger de-excitation (AD) rates of He*(1s2s) projectiles. A key quantity is the surface density of states (DOS) projected on the Is orbital of the He* atom, which is calculated along its trajectory. We use density functional theory within both supercell geometry and embedded cluster models to calculate MIES spectra for the perfect MgO surface and for an MgO surface with different concentrations of adsorbed oxygen atoms. First we calculate the Auger de-excitation rates at various positions of the projectile above the surface. To predict MIES spectra, we integrate over projectile trajectories, with a subsequent weighted averaging with respect to various lateral positions of He* above the MgO surface unit cell. It is important to examine final-state effects for a correct comparison between theory and experiment, especially when there are localised defect states. (C) 2000 Elsevier Science B.V. All rights reserved

    Electron trapping at point defects on hydroxylated silica surfaces

    Get PDF
    The origin of electron trapping and negative charging of hydroxylated silica surfaces is predicted based on accurate quantum-mechanical calculations. The calculated electron affinities of the two dominant neutral paramagnetic defects, the nonbridging oxygen center, equivalent to Si-O-center dot, and the silicon dangling bond, equivalent to Si-center dot, demonstrate that both defects are deep electron traps and can form the corresponding negatively charged defects. We predict the structure and optical absorption energies of these diamagnetic defects

    Unambiguous interpretation of atomically resolved force microscopy images of an insulator

    Get PDF
    The (111) surface of CaF 2 was imaged with dynamic mode scanning force microscopy and modeled using atomistic simulation. Both experiment and theory showed a clear triangular contrast pattern in images, and theory demonstrated that the contrast pattern is due to the interaction of a positive electrostatic potential tip with fluorine ions in the two topmost surface layers. We find a good agreement of position and relative height of scan line features between theory and experiment and thus establish for the first time an unambiguous identification of sublattices of an insulator imaged by force microscopy

    Mechanism of phase transitions and the electronic density of states in (La,Sm)FeAsO1−x_{1-x}Fx_x from ab initio calculations

    Full text link
    The structure and electronic density of states in layered LnFeAsO1−x_{1-x}Fx_x (Ln=La,Sm; xx=0.0, 0.125, 0.25) are investigated using density functional theory. For the xx=0.0 system we predict a complex potential energy surface, formed by close-lying single-well and double-well potentials, which gives rise to the tetragonal-to-orthorhombic structural transition, appearance of the magnetic order, and an anomaly in the specific heat capacity observed experimentally at temperatures below ∼\sim140--160 K. We propose a mechanism for these transitions and suggest that these phenomena are generic to all compounds containing FeAs layers. For x>x>0.0 we demonstrate that transition temperatures to the superconducting state and their dependence on xx correlate well with the calculated magnitude of the electronic density of states at the Fermi energy.Comment: 4 pages, 3 figures, 1 tabl

    Electron localization and a confined electron gas in nanoporous inorganic electrides

    Get PDF
    The nanoporous main group oxide 12CaO.7Al(2)O(3) (C12A7) can be transformed from a wide-gap insulator to an electride where electrons substitute anions in cages constituting a positive frame. Our ab initio calculations of the electronic structure of this novel material give a consistent explanation of its high conductivity and optical properties. They show that the electrons confined in the inert positive frame are localized in cages and undergo hopping between neighboring cages. The results are useful for the understanding of behavior of confined electron gas of different topology and electron-phonon coupling, and for designing new transparent conductors, electron emitters, and electrides

    Theoretical modeling of charge trapping in crystalline and amorphous Al2O3

    Get PDF
    The characteristics of intrinsic electron and hole trapping in crystalline and amorphous Al2O3 have been studied using density functional theory (DFT). Special attention was paid to enforcing the piece-wise linearity of the total energy with respect to electron number through the use of a range separated, hybrid functional PBE0-TC-LRC (Guidon et al 2009 J. Chem. Theory Comput. 5 3010) in order to accurately model the behaviour of localized states. The tuned functional is shown to reproduce the geometric and electronic structures of the perfect crystal as well as the spectroscopic characteristics of MgAl hole centre in corundum α-Al2O3. An ensemble of ten amorphous Al2O3 structures was generated using classical molecular dynamics and a melt and quench method and their structural characteristics compared with the experimental data. The electronic structure of amorphous systems was characterized using the inverse participation ratio method. Electrons and holes were then introduced into both crystalline and amorphous alumina structures and their properties calculated. Holes are shown to trap spontaneously in both crystalline and amorphous alumina. In the crystalline phase they localize on single O ion with the trapping energy of 0.38 eV. In amorphous phase, holes localize on two nearest neighbour oxygen sites with an average trapping energy of 1.26 eV, with hole trapping sites separated on average by about 8.0 Å. No electron trapping is observed in the material. Our results suggest that trapping of positive charge can be much more severe and stable in amorphous alumina rather than in crystalline samples
    • …
    corecore