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1. Introduction

Thin films of amorphous alumina (a-Al2O3) play a key role 
in the development of a wide range of applications, notably 
non-volatile memory [2, 3] and amorphous indium gallium 
zinc oxide (a-IGZO) thin film transistors [4]. With its wide 
band gap and dielectric constant double that of SiO2, Al2O3 
is a suitable replacement as the blocking dielectric in these 
devices, and has also been investigated as a charge trap-
ping layer [3] in charge trap flash memory. Charge trapping 
in dielectrics can be both advantageous and detrimental and 

significantly affects the performance of devices. However, 
surprisingly little is still known about intrinsic electron and 
hole trapping in amorphous oxides. The aim of this work is to 
investigate the electron and hole trapping in the bulk of crys-
talline and amorphous alumina.

Self-trapped hole (STH) polarons have been theoretically 
predicted in crystalline α-Al2O3 using both INDO [5] and 
DFT methods [6]. The hole polaron self-trapping energy (the 
energy difference between the fully delocalized and localized 
hole states) has been predicted using the hybrid functional 
HSE06 [7–8] at 0.13 eV [6]. Similarly small hole trapping 
energies have been predicted for many crystalline oxides, 
such as monoclinic ZrO2 and HfO2 [9, 10], BaZrO2 [11] and 
several others (see e.g. [6, 12]). However, experimental veri-
fication of these predictions is often challenging and there are 
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Abstract
The characteristics of intrinsic electron and hole trapping in crystalline and amorphous 
Al2O3 have been studied using density functional theory (DFT). Special attention was paid to 
enforcing the piece-wise linearity of the total energy with respect to electron number through 
the use of a range separated, hybrid functional PBE0-TC-LRC (Guidon et al 2009 J. Chem. 
Theory Comput. 5 3010) in order to accurately model the behaviour of localized states. The 
tuned functional is shown to reproduce the geometric and electronic structures of the perfect 
crystal as well as the spectroscopic characteristics of MgAl hole centre in corundum α-Al2O3. 
An ensemble of ten amorphous Al2O3 structures was generated using classical molecular 
dynamics and a melt and quench method and their structural characteristics compared with 
the experimental data. The electronic structure of amorphous systems was characterized using 
the inverse participation ratio method. Electrons and holes were then introduced into both 
crystalline and amorphous alumina structures and their properties calculated. Holes are shown 
to trap spontaneously in both crystalline and amorphous alumina. In the crystalline phase 
they localize on single O ion with the trapping energy of 0.38 eV. In amorphous phase, holes 
localize on two nearest neighbour oxygen sites with an average trapping energy of 1.26 eV, 
with hole trapping sites separated on average by about 8.0 Å. No electron trapping is observed 
in the material. Our results suggest that trapping of positive charge can be much more severe 
and stable in amorphous alumina rather than in crystalline samples.
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no reliable experimental data demonstrating hole polaron for-
mation in α-Al2O3.

However, the experimental data [13, 14] and recent calcul-
ations suggest that structural disorder in amorphous oxides, 
such as a-SiO2 [15–17] and a-HfO2 [18], facilitates intrinsic 
electron and hole trapping in much deeper states than in the 
corresponding crystalline phases with trapping energies of 
about 1.0 eV. The wide applications of amorphous Al2O3 films 
prompted us to consider whether this is the case also in these 
films. They have a similar O 2p nature of the top of the valence 
band but a different character of disorder to the amorphous 
SiO2 formed by a continuous random network of SiO4 tetra-
hedra. Recent spectroscopic measurements of charge trapping 
in thin alumina films [19] have attributed states in the band 
gap to intrinsic hole polaron trapping and suggested that local-
ized O 2p5 states are spread throughout the band gap rather 
than forming a relatively narrow band discussed in amorphous 
SiO2 [15, 16] and HfO2 [18].

Scarce experimental data and lack of a general consensus 
on the electronic properties of a-Al2O3 pose significant prob-
lems for theoretical predictions of the behaviour of excess 
electrons and holes in this system. On one hand, predicting 
electron or hole localization is a well-recognized challenge 
for DFT (see e.g. [20–23]). On the other hand, there are no 
reliable models for a-Al2O3 structures.

In order to overcome the first problem, in this work we 
tuned a range separated hybrid functional PBE0-TC-LRC [1] 
to satisfy the Koopmans’ condition and then tested it against 
the experimental properties of the MgAl defect in crystal-
line alumina. An ensemble of ten amorphous structures was 
generated using classical molecular dynamics and a melt 
and quench method and their structural characteristics com-
pared with the experimental data. Electrons and holes were 
then introduced into both crystalline and amorphous alumina 
structures and their properties calculated. These calculations 
demonstrate that electrons do not trap in both crystalline and 
amorphous alumina. However, holes self-trap in crystalline α-
alumina with trapping energies of 0.38 eV and trap at intrinsic 
precursor sites in amorphous alumina with average trapping 
energy of about 1.3 eV.

2. Methodology

Localization of a small radius polaron in the bulk crystalline 
phase may take place at all equivalent lattice sites with equal 
probability. On the other hand, in amorphous structures all sites 
are different and charge trapping takes place at intrinsic struc-
tural precursor sites. The concentration of such sites is system 
specific and is difficult to predict a priori. At some of these 
sites carriers can trap spontaneously whereas at others trap-
ping requires overcoming an energy barrier. For example, the 
number of trapping sites where electrons can localize sponta-
neously in a-SiO2 has been shown to be around ×4 1019 cm−3  
[17]. Therefore finding one such a site in a periodic cell 
requires a cell size of around 1000 atoms. Using periodic 
cells is required in order to avoid border effects which may 
affect the characteristics of trapped charges in finite systems. 

However, this makes the amorphous structures quasi-periodic 
and induces constraints on the structural relaxation accom-
panying charge trapping. Taken together these factors imply 
that simulations should be performed in the largest periodic 
cells feasible for DFT calculations. However, different trap-
ping sites have different trapping energies and spectroscopic 
characteristics. To credibly predict distributions of properties, 
calculations in many models are required.

2.1. Generation of the amorphous structure

In order to create sufficient statistics, ten sample structures 
of amorphous Al2O3 have been generated using a molecular 
dynamics (MD) melt and quench approach run using the 
LAMMPS code [24] and then fully relaxed using a DFT 
calcul ation described later in the paper. The MD simulation 
uses a 360 atom supercell of α-Al2O3 as the initial structure. 
This cell size represents a compromise between the size of 
the cell and computer time required to achieve representative 
distributions of charge trap properties. The NPT ensemble is 
used with a time-step of 0.1 fs. The initial structure is equili-
brated at 300 K for 10 ps. The temperature is then increased 
to 5000 K over 20 ps. This is then followed by an equilibra-
tion at 5000 K for 20 ps. The structure is then cooled to 1 K 
to generate the final structure, with cooling rates of 1 K ps−1,  
10 K ps−1 and 100 K ps−1 being investigated.

The structural properties of the amorphous samples pro-
duced are mainly dependent on the potential used and the 
cooling rate of the MD simulation. The potential selected for 
this study has been previously used to model a-Al2O3 [25, 26]. 
It is a Born-Mayer potential with an added van der Waals term:
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where the parameters for the potential are given in table 1.

2.2. DFT calculations

The electronic structure of crystalline and amorphous Al2O3 
was calculated using the CP2K package [27]. CP2K makes 
use of hybrid Gaussian and plane wave type basis sets. All 
calculations are run at the Γ point of the Brillouin zone. The 
DZVP-MOLOPT-SR-GTH [28] basis sets were used for both 
O and Al, along with the Goedecker–Teter–Hutter (GTH) 
pseudopotentials [29, 30]. The converged plane wave energy 
cutoff was set to 500 Ry and the SCF convergence criterion 
was set to a maximum energy difference of 10−6 a.u. between 
steps. All final geometry relaxations were performed using 
the PBE0-TC-LRC [1] hybrid functional described below 
and used the conjugate gradient optimizer with a maximum 

Table 1. Parameters for the potential [25] used to generate the 
amorphous Al2O3 structures.

Atom q(e) ( )A Å ( )B Å (   )/C Å eV
3 1 2 (   )−

D Å eV
1

Al 1.4175 0.7852 0.034 0.3816 0.043 36
O −0.9450 1.8215 0.138 0.9391 0.043 36

J. Phys.: Condens. Matter 29 (2017) 314005



O A Dicks and A L Shluger 

3

force convergence criterion of 0.05 eV 
−

Å
1
 for each atom. The 

auxiliary density matrix method [31] (ADMM) was used to 
reduce the computational cost associated with using the range 
separated hybrid functional, allowing the calculation of rela-
tively large 360 atom systems.

2.2.1. Tuning the functional. As noted above, self-trapped 
polarons in crystals usually have small trapping energies of 
the order of 0.1–0.3 eV. This means that even qualitative pre-
dictions of their stability are greatly affected by the choice 
of the Hamiltonian. The early many-electron calculations of 
polarons and excitons in insulators were carried out using 
the Hartree–Fock method (e.g. [32, 33]) and semi-empirical 
quantum chemistry techniques (e.g. [34, 35]), which tend to 
over-localize electronic states. This is not a big problem for 
e.g. calculating the spectroscopic properties of well localized 
polarons. However, predicting the formation and stability 
of polaronic states remains a challenge. It has been realized 
early on that DFT in LDA and GGA approximations tends to 
delocalize electrons and fails to predict exciton [21] and hole 
polaron [20] localization in the well-established cases. This 
has been attributed to the self-interaction error [20, 21] and a 
quick fix of adjusting the amount of Hartree–Fock exchange 
in hybrid density functionals has been widely implemented to 
provide the electron localization in known cases (e.g. [15, 20, 
36]). A cheaper and more targeted approach is to adjust the 
U parameter in LDA+U or GGA+U calculations of polaron 
states. Several flavours of this approach have been suggested 
over the years, as discussed in [37–40], and it is still very 
widely used. The predictive power of these two approaches 
is again limited but they can be used very effectively in ‘test 
and predict’ mode where the parameters (e.g. the amount of 
HF exchange or the U value) are first fitted to reproduce the 
established data and then the same parameters are used for 
predictive calculations. However, the transferability of these 
parameters between materials is quite limited.

It has been noted more generally [23, 41] that failures of 
DFT to correctly predict localization of electronic states and 
charge transfer spectra are associated with a wrong asymp-
totic behaviour of approximate exchange-correlation (XC) 
potentials for isolated molecules, ‘nearsightedness’ of XC 
response kernels, and lack of the integer discontinuity [41]. 
Therefore significant recent efforts have focused on creating 
so called Koopman’s-compliant exchange-correlation func-
tionals with piecewise linearity with respect to fractional 
particle occupations and developing range-separated hybrid 
functionals for molecular systems [39, 42–44]. A commonly 
used method is to correct the non-piecewise linearity of the 
total energy (E) with respect to (the continuous) electron 
particle number (N) in DFT systems [39, 42]. The linearity 
condition, where ( / =E Nd d 02 2 ), is shown to be a prop-
erty of the exact exchange-correlation functional by Perdew 
et al [45]. Local and semi local functionals deviate from the 
straight line behaviour, instead showing curvature where 
( / >E Nd d 02 2 ), while in HF theory the opposite behaviour is 
observed and ( / <E Nd d 02 2 ). Lany and Zunger [39] proposed 
that, by enforcing the linearity condition, the energy of the 

self-interaction of the electron or hole after addition is can-
celled by the energy of the wavefunction relaxation, allowing 
a more accurate description of localized states. Thus by either 
applying DFT+U [39] or the use of hybrid functionals [42], 
the linearity condition can be enforced. It has not been dem-
onstrated that satisfying this condition is necessary for cor-
rect description of electron localization. However, it has been 
observed that localization can indeed be achieved by tuning 
the parameters of the effective localizing potential [39] to sat-
isfy the linearity condition.

In an alternative approach [43, 46], range separated 
hybrid functionals are investigated, with parameters opti-
mally tuned so that the generalized Koopmans’ condition is 
enforced, equivalent to ensuring the linearity condition as in 
the methods mentioned above. This enables quantitative pre-
dictions of band gaps and energy levels in molecules to be 
made without the need for empirical matching. This approach, 
however, cannot be easily generalized for infinite solids [47].

In this paper we test a similar approach where the range 
separated hybrid functional PBE0-TC-LRC [1] is used with 
a tuned cutoff radius. This functional has been introduced to 
allow efficient calculation of exact exchange in Γ point codes, 
such as CP2K, and provides large speedup of the calculations 
without loss of accuracy. The exchange-correlation part of the 
PBE0-TC-LRC functional has the form

( )= + + − +E aE aE a E E1 .xc x x x c
HF,TC PBE,LRC PBE PBE

PBE0 is the standard PBE hybrid functional [48, 49] with 
a  =  0.25. Ex

HF,TC is the truncated Hartree–Fock exchange, 
Ex

PBE,LRC is the long range PBE exchange with a truncated 
Coulomb potential, Ex

PBE is the PBE exchange and Ec
PBE is the 

PBE correlation. The truncated Coulomb (TC) version of the 
Hartree–Fock exchange takes the form
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where R is the cutoff parameter. The long-range correction 
(LRC) is based on the PBE exchange hole [1]. This func-
tional is similar to HSE06 [7–8] in that, unlike many other 
range-separated hybrid functionals, it uses short-range exact 
exchange and a long-range semi-local functional.

We use the cutoff radius R as a variational parameter which 
is tuned to minimize a deviation of the functional from straight 
line behaviour, unlike e.g. in previous work [42], where the 
proportion of exact exchange, a was varied, though both 
change the contribution of the exact exchange to the energy 
(see also [44]).

To find the cutoff parameter, R, we use the same method 
as in [43, 44]. The exact form of Koopmans’ Theorem in K–S 
theory:

J. Phys.: Condens. Matter 29 (2017) 314005
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( ) ( )ε = −N I NHOMO

where ( )ε NHOMO  is the energy of the K–S highest occupied 
molecular orbital (HOMO) and I(N) is the ionization potential 
of the N electron system. The ionization potential of the N 
electron system can also be defined; 

( ) ( ) ( )≡ − −I N E N E N1 ,gs gs

the difference between the energy of the ground state of the 
N  −  1 electron, ( )−E N 1gs , and N electron, ( )E Ngs  system, or 
the energy to remove an electron from the system. A similar 
condition can be imposed for the addition of an electron to the 
system, where the LUMO energy is equated with the electron 
affinity. From these equations R can then be tuned so that the 
function [46]

( )  [ ( ) ( )]
[ ( ) ( )]
ε

ε

= +

+ + + +

J R N I N

N I N1 1

R R

R R

HOMO
2

HOMO
2

 (3)

is minimized. This equation also accounts for the error in the 
LUMO level, or the N  +  1 system, important when investi-
gating the possible localization of electrons. We apply this 
functional in the ‘test and predict’ manner where the func-
tional is first tested using the data available for crystalline alu-
mina and then used to make predictions for the amorphous 
structure.

As one can see in figure 1, the deviation of straight line 
error (DSLE) is minimized when R  =  3.0 Å. At this cutoff the 
largest absolute error in fulfilling the Koopman’s condition is 
0.04 eV. It is significantly smaller than the trapping energies 
and therefore may allow qualitatively accurate predictions of 
the properties of trapped holes and electrons in both crystal-
line and amorphous alumina.

3. Results of calculations

3.1. Properties of α-Al2O3

The tuned PBE0-TC-LRC [1] functional was benchmarked 
against known structural and electronic properties of the 
crystalline system. The structural properties of the 360 atom 

α-Al2O3 cell were in good agreement with x-ray crystallog-
raphy data [50] (see table  2), with all the calculated lattice 
parameters within 0.2% of the experimental values after a full 
cell relaxation.

It is also important that the functional reproduces the bulk 
electronic structure. The K–S band gap was calculated to be 
8.6 eV (see table 3), which is close to the experimental optical 
band gap of 8.8 eV [51]. It should be noted that the functional 
was tuned to obey the Koopmans’ condition rather than fit to 
empirically match the experimental optical band gap. The elec-
tronic structure was also calculated using the HSE06 [7] and 
the PBE0-TC-LRC functional with a larger cutoff of 5.0 Å (see 
table 3). It can be seen that HSE06, whilst having a similar 
DSLE, underestimates the band gap by approximately 0.8 eV.

3.1.1. Properties of MgAl defect. Due to low trapping ener-
gies, it is difficult to measure the properties of self-trapped 
hole polarons in α-Al2O3 experimentally. Instead the func-
tional can be benchmarked against the EPR [52, 53] and 
optical absorption [54] properties of the MgAl defect. It has 
originally been assumed that Mg acts as an acceptor [55], with 
the hole localizing on the nearest neighbour oxygen, becom-
ing O−, which makes it a good test system for hole trapping. 
However, previous INDO calculations [5] suggested the hole 
localization over two O ions is more energetically favourable.

The calculations performed in this paper show that the com-
pensating hole localizes predominantly on one O ion (a spin of 
0.76 from Mulliken analysis), as can be seen in figure 2. This 
localization is accompanied by a large elongation of the Mg–O 
bonds by 0.4 Å from the original perfect lattice positions. The 
three nearest neighbour Al ions that lie in the same plane as 
the O− displace away from the O atom by less than 0.1 Å (see 
table 4). The calculated isotropic hyperfine splitting for these 
nearest neighbour Al are shown in table 4 and are compared 
to the experimental ENDOR measurements [53] These results 
agree well with the experimental results and also agree quali-
tatively with Adrian et al [55] whose semi-empirical model 

Figure 1. The total of the J(R) functions of both the amorphous 
and crystalline structures plotted against the PBE0-TC-LRC cutoff 
radius. It can be seen that the error is at a minimum when R  =  3.0 Å.

Table 2. Comparison of the calculated lattice parameters for 
corundum α-Al2O3 with the experimental data [50].

Lattice parameter Theory ( )Å Experiment Å( ) Error (%)

a 4.7555 4.7605 −0.1
b 8.2370 8.2454 −0.1
c 12.9730 12.9956 −0.2

Table 3. Comparison of the properties of the crystalline, α-Al2O3, 
system calculated using the HSE06 [7] functional and PBE0-TC-
LRC [1] functionals with a varied cutoff.

Functional
Maximum  
DSLE (eV)

Kohn–Sham 
Bandgap (eV)

Hole  
Etrap (eV)

HSE06 [7] 0.04 8.1 0.13
PBE0-TC-LRC  
R  =  3.0

0.04 8.6 0.38

PBE0-TC-LRC  
R  =  5.0

0.10 8.7 0.42

J. Phys.: Condens. Matter 29 (2017) 314005
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of the defect predicts a strong dependence of the hyperfine 
constant on the O–Al distance. It also serves to confirm that a 
single O traps a hole when an MgAl defect is introduced, and 
is able to predict the structural relaxation of that site.

The unoccupied K–S LUMO energy level of the MgAl 
defect lies 2.15 eV above the VBM. Time-dependent DFT 
(TD-DFT) calculations [56] of the optical absorption of this 
defect demonstrate broad spectrum with the maximum at 
2.4 eV determined by transitions from the valence band states 
into the LUMO state. This can be compared with the optical 
absorption spectrum reported by Wang et al [54] which has a 
maximum at 2.6 eV with a full width half maximum of 1.3 eV 
that they associate with the MgAl defect. This assignment is 
confirmed by ESR measurements.

These results demonstrate that the tuned PBE0-TC-LRC 
functional performs well for perfect crystalline alumina and 
also allows positive identification of the MgAl defect in α-
Al2O3. This gives confidence to consider intrinsic polarons in 
crystalline and amorphous alumina.

3.2. The hole polaron in α-Al2O3

Intrinsic hole polarons in crystalline α-Al2O3 have been 
studied theoretically using classical and INDO methods [5]. 

Zhukovskii et al [5] investigated whether STH polarons are 
more stable when localized on a single O or over two O ions, 
concluding that two-site holes are more stable. They calcu-
lated trapping energies to characterize the stability of the 
holes, however, the INDO method leads to a large over-esti-
mation of these energies, in the order of 3–5 eV. The trapping 
energy, Etrap, is defined as

( ) ( )= − − −E E N E N1 1trap neutral polaron

where ( )−E N 1neutral  is the total energy of the unrelaxed cell 
in the neutral geometry with a delocalized hole in the valence 
band and ( )−E N 1polaron  is the total energy of the fully relaxed 
cell with a hole polaron. The same definition is used in this 
paper and is comparable to the trapping energies calculated in 
previous papers [5, 6].

More recently, DFT calculations using HSE06 [7] have 
calculated the trapping energy of hole polarons to be 0.13 eV 
[6], with the majority of the spin density located on a single 
oxygen. This result is reproduced in this paper using the 
HSE06 functional (see table 3).

The calculations performed in this paper using the tuned 
PBE0-TC-LRC functional predict that introduction of a hole 
to the system results in self-trapping, with 0.8 of the spin (from 
Mulliken analysis) localized on one O ion (see figure 3). The 
calculated trapping energy of the hole polaron in α-Al2O3 
is 0.38 eV. Hole localization is accompanied by displace-
ments of the surrounding ions, with three of the four Al–O 
bonds elongating by approximately 0.1 Å, and the elongation 
of one Al–O bond by 0.3 Å. The top of the valence band of  
α-Al2O3 is composed of O 2p orbitals. The dispersion of this 
band is small, meaning that the increase in kinetic energy of 
the hole upon localization is smaller than the energy of the 
lattice relaxation, resulting in the high trapping energies. The 
calculated trapping energy is larger than that using HSE06 
calculated here and in previous papers [6], likely because 
the functional more strongly localizes the hole, and includes 
a larger contribution of exact exchange than HSE06. It can 

Figure 2. The spin density of the MgAl defect, where the hole is 
predominantly localized on one O ion. Mg is brown, O red and Al 
blue. The arrows show the direction of cation relaxation.

Table 4. The calculated isotropic hyperfine parameters of the MgAl 
defect as well and the experimental ENDOR values [53]. It also 
shows the nearest neighbour distances to the oxygen where the hole 
localizes and compares them to the original predictions from theory 
[55]. The atom labels are from figure 2.

Atom X

Isotropic hyperfine (MHz) O–X distance (Å)

Calc. Exp. [53] Calc. [55]

Al1 18.91 19.03 1.888 1.834
Al2 13.85 14.18 1.942 1.917
Al3 9.12 7.29 2.062 2.104
Mg 2.06 — 2.353 —

Figure 3. The spin density of the hole polaron in α-Al2O3, and the 
direction of relaxation of the ions. The Al ions are coloured blue 
and the O are red.
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be seen from table 3 that HSE06 does not perform as well 
as PBE0-TC-LRC in reproducing the correct band gap which 
could be a result of the over delocalization.

3.3. The geometric structure of a-Al2O3

To study polarons in amorphous alumina, the geometric struc-
tures used for calculations have to accurately reproduce the 
overall topology and local features of the material. The geo-
metric properties of the ten a-Al2O3 structures generated in 
this study through MD melt-quench show excellent agreement 
with experimentally measured densities, coordination num-
bers and x-ray diffraction data of lab grown thin films. After 
the structures were generated using MD melt-quench proce-
dure, a full cell optimization was performed using the PBE 
functional. A final geometry optimization was then performed 
using the tuned PBE0-TC-LRC [1] functional.

The density of α-Al2O3 (a crystalline phase) is 3.95 g cm−3,  
but when thin films of amorphous alumina are grown large 
changes in the density of the material are detected (see 
table 5). Groner et al [57] deposited thin films of alumina at 
varying low temperatures using ALD on n-type silicon wafers 
and quartz crystal microbalance (QCM) substrates. The QCM 
was used to measure the mass of a film whilst various other 
measurement techniques were used to determine the thick-
ness including AFM and spectroscopic ellipsometry. X-ray 
reflectivity (XRR) was also used independently to determine 
the density. These different measurement techniques gave a 
range of values for the density but most methods were within 

−0.1 g cm 3     of each other. The average reported densities were 
3.0 g cm−3 for films grown at  �177 C and 2.5 g cm−3 for those 
grown at 33 °C. Measurements of alumina film density per-
formed by Ilic et al [58] on ALD ultrathin films using nano-
mechanical oscillators give a value of ±3.2 0.1 g cm−3. The 
densities of the generated structures of a-Al2O3 agree very 
well with the experimental values, with the averages lying 
within the range of 3.06–3.25 g cm−3 (see table 5).

The radial distribution functions (RDFs) of the amorphous 
structures, shown in figure 4, agree well with the x-ray and 
neutron diffraction studies performed by Lamparter [59], with 
the peak maxima within 0.05 Å of the experimental results. 
The RDFs were scaled so that the maximum peak intensities 
were equal, but no other fitting was carried out. Lee et al [60] 
use 2D 3QMAS NMR to measure coordination numbers of 
ions in thin films of Al2O3 deposited on Si(1 0 0) wafers by 
RF magnetron sputtering at low temperatures. They measure 
the distribution of coordination numbers of Al with O to be  

[4]Al ±55% 3%; [5]Al ±42% 3%; [6]Al ±3% 2%, compared to 
an average of 53%, 37% and 10% from the ten generated amor-
phous structures respectively. This shows that in amorphous 
films most Al are under-coordinated with respect to α-Al2O3, 
where all Al are 6-coordinated with O.

3.4. The electronic structure of a-Al2O3

3.4.1. Bulk structure. Having demonstrated that the tuned 
density functional gives good agreement with the exper-
imental data for α-Al2O3 and the structure of a-Al2O3, we now 
turn to the electronic structure of a-Al2O3. The average Kohn–
Sham band gap is calculated to be 5.5 eV from the 10 a-Al2O3 
structures. Experimentally the band gap has been measured 
to be 6.0–7.1 eV [61–65], though often tails are observed in 
the spectra which are most likely due to localized states at 
band edges. The electronic structure of amorphous solids can 
be further characterized using the inverse participation ratio 
(IPR). This method takes advantage of the atom centered basis 
set used in CP2K to quantify the degree of localization of each 
eigenvector. It has often been used to characterize localiza-
tion of vibrational and electronic states in amorphous solids 
[66–70]. The IPR is defined as:

( )
( )
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∑

∑
=

=

a

a
IPR n

i
N

ni

i
N

ni

1
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2 2
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∑ψ φ=
=
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i

N

ni i
1

is the nth Kohn–Sham eigenvector (MO), N is the number of 
atomic orbitals and φi is the ith atomic orbital. The IPR is 1/N 
for completely delocalized MOs, and 1 for MOs that are local-
ized on a single atomic basis orbital.

The IPR analysis of a-Al2O3, shown in figure 5(b), dem-
onstrates that there are many localized states at the top of the 
valence band but the bottom of the conduction band is formed 
by delocalized states. Crucially, the states in the valence band 
only become completely delocalized approximately 1.0 eV 
below the HOMO, and can be attributed to the onset of the 
mobility edge. The mobility edge is usually defined as a trans-
ition between localized states, which do not contribute to the 
electrical conductivity of the system, and extended states, 
which can contribute to the electrical conductivity in dis-
ordered systems [71]. Using the IPR analysis, one can approxi-
mately define mobility edge as the onset of states with an IPR 

Table 5. Densities of a-Al2O3 measured using a variety of experimental techniques and compared to the average density calculated using 
DFT in this paper.

Authors Growth technique Substrate Measuring technique
Density  
(g cm−3)

Groner et al [57] ALD(  306 K) n-type Si XRR 2.46

ALD(  450 K) n-type Si XRR 3.06
Ilic et al [58] ALD Si NEMS 3.20
Ok et al [4] ALD SiNx XRR 2.97–3.14
PBE0-TC-LRC 3.14
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corresponding to delocalized states [68, 70, 72]. This suggests 
that the HOMO-LUMO gap is not a good approximation of the 
band gap in amorphous materials, and that the band gap will 
rely on the position of the mobility edge. This would place the 
predicted band gap in the 6.0–7.0 eV range. A recent paper [19] 
reports a band gap of 7.1 eV from EELS measurements, but 
also show non-zero scattering intensity to below 6 eV, in agree-
ment with the calculations presented in this paper.

The degree of electron localization at the band edges is most 
likely due to the respective orbital character of the valence and 
conduction bands. The density of states in figure 5(a) shows 
that the top of the valence band is composed of O 2p orbitals, 
whereas the bottom of the conduction band is composed pre-
dominantly of Al 3s orbitals. These states demonstrate a very 
high dispersion in crystalline corundum structures [73] which 
projects into the a-Al2O3 states in terms of band unfolding 
procedure [74]. The high electron mobility prevents localiza-
tion at the bottom of the conduction band.

3.4.2. Hole polarons in a-Al2O3. The states with high local-
ization at the top of the valence band (figure 5(b)) in the neu-
tral system correspond with local structural features that result 
in hole trapping, defined as ‘precursor sites’ for the purposes 
of this paper. When a hole is introduced to the system it will 
spontaneously localize at one of the precursor sites predicted 
from the IPR. In all ten amorphous structures of Al2O3 strong 
intrinsic hole trapping is observed, with an average trapping 
energy of 1.26 eV. The range of trapping energies is calculated 
to be 1.0–1.5 eV (see table 6). The much larger trapping ener-
gies observed in the amorphous structures when compared to 
the crystalline is most likely due to the under-coordination 
of the O atoms, where over 80% are 3-coordinated with Al, 
rather than 4-coordinated as in α-Al2O3. This under coordina-
tion leads to much larger relaxations of the ions and a different 
configuration of the trapped hole polaron. Many of the precur-
sor sites where the hole polarons are able to localize include a 
2-coordinated O ion (see table 6), which account for approxi-
mately 5% of oxygens in the amorphous structure, though not 
all precursor sites include a 2-coordinated oxygen.

Although the precursor sites are most easily identified from 
the IPR data, there are stuctural similarities between the hole 
traps. Unlike in α-Al2O3 where the hole localizes on one O 
ion, in a-Al2O3 over 90% of the spin density localizes on two 
nearest neigbour O ions (see figure 6) with an average O-O 
separation of 2.6 Å before relaxation (see table 6). This means 
the hole traps have a local structure involving multiple ions. 
The spin density is not, however, evenly distributed between 
the two oxygens, one normally accounts for 0.7 of the spin 
(from Mulliken analysis) with the other approximately 0.2. 
Between the two O ions where the hole is localized there 
is a large contraction of the O–O bond of 0.3–0.4 Å, much 
larger than the relaxation of the O–O bonds in the crystalline 
system which are less than 0.1 Å. The O–Al–O bond angle 
also decreases by an average of 10°. There is also a small dis-
placement of the Al ions, which move approximately 0.1 Å.

Due to the large distribution of bond angles and bond dis-
tances in a-Al2O3 there are multiple precursor sites where the 
local structural configuration of the ions allows for hole trap-
ping. These precursor sites are identified using the IPR data, 
and hole polarons can be localized at different sites within the 
cell. In a-Al2O3 there are an average of three to four precursor 
sites per 360 atom cell where hole polarons are able to trap, 
with an average separation of 8 Å between sites. This leads 
to a maximum density of precursor sites of approximately  
2.6 ×1020 cm−3. The variation of trapping energies of the pre-
cursor sites within the cell is similar to that between different 
samples, with a typical variation of 0.3 eV.

Figure 4. Comparison of the calculated and experimental [59] 
radial distribution function for Al–O coordination.

Figure 5. (a) The projected density of states (PDOS) and (b) 
inverse participation ratio (IPR) of one structure of a-Al2O3, 
showing strong localization of the top of the valence band.
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Using a nudged elastic band calculation (NEB) the thermal 
barrier to a hole hopping between two hole trapping sites in the 
same cell was calculated to be 0.3–0.6 eV. However, unlike in 
crystalline Al2O3 where adjacent hole trapping sites are equiv-
alent, in the amorphous material precursor sites are separated 
by distances of 8.0 Å, which would suggest that transport is 
more likely to be through a tunneling process. The high trap-
ping energies of hole polarons and barriers to hopping also 
suggest that there is likely to be stronger positive charging in 
a-Al2O3 than in the crystalline material, and that this charging 
could be due to intrinsic hole trapping rather than impurities 
in the material.

3.4.3. Electron trapping in Al2O3. Self trapped electron polar-
ons in crystalline α-Al2O3 were not found to be stable. This 
is most likely, as stated earlier, due to the large dispersion 
of the conduction band at the Γ-point of α-Al2O3 [73], the 
small relaxation of the lattice cannot compensate for the large 
increase in kinetic energy of the electron as it is localized and 
so the polaron is not self trapped.

Although deep electron traps in a-Al2O3 have been 
observed experimentally [2], after examining 30 different 
geometric structures (20 of them 120 atom models) no signif-
icant evidence for intrinsic electron trapping was observed. 
Extra electrons are delocalized at the bottom of the conduc-
tion band. The IPR of a-Al2O3 in figure  5(b) suggests the 
reason for the much lower density of electron traps when 

compared to hole traps is there are no localized precursor 
sites at the bottom of the conduction band. In materials 
which show strong intrinsic electron trapping, the bottom of 
the conduction band generally has lower dispersion and is 
composed of orbitals that are more directional. In the case of 
HfO2 [18], the CBM is composed of d orbitals and demon-
strates electron trapping energies of 1.4 eV, and even the for-
mation of electron bipolarons. In a-Se photodetectors [75] it 
is reported that an a-HfO2 blocking layer is more effective at 
suppressing both electron and hole injection than an a-Al2O3 
layer. The greater number of charge traps in HfO2 could sug-
gest that while pure alumina does trap charge, it only traps 
holes.

4. Conclusions

We have studied intrinsic charge trapping in amorphous alu-
mina through the use of DFT simulations with the range-sepa-
rated hybrid functional PBE0-TC-LRC. The truncation radius 
was tuned to provide the piece-wise linearity of the energy. 
Satisfying this condition led to qualitatively correct predic-
tions of electron and hole localization at impurities in other 
calculations [39, 42]. The performance of PBE0-TC-LRC with 
R  =  3.0 Å was tested by reproducing the properties of α-Al2O3 
as well as the spectroscopic properties of the MgAl defect in  
α-Al2O3. The substitution of Al by Mg in α-Al2O3 creates a 
local negative charge which is known to be compensated by 
positive hole trapped on a nearby O ion. This defect has been 
studied by EPR [52, 53] and optical spectroscopy [54].

The calculations reproduce the structure and the band gap 
of α-Al2O3 as well as the spectroscopic properties of MgAl 
defect in good agreement with the experiment. Using this 
functional, it was shown that holes can trap spontaneously 
in amorphous alumina on two nearest neighbour oxygen 
sites, with an average trapping energy of 1.26 eV. It is also 
demonstrated that there is a high density of hole trapping 
precursor sites in a-Al2O3. These are typically low-coordi-
nated O sites which are separated on average by about 8.0 
Å. However, unlike in other oxides, such as SiO2 and HfO2, 
no electron trapping was observed in both crystalline and 
amorphous alumina. This is attributed to the orbital nature 
of the bands, with the CBM being composed of highly dis-
persed 3 s states. This suggests that the nature of intrinsic 

Table 6. The properties of different hole trapping sites in the ten geometry samples of a-Al2O3, including the coordination number of the 
oxygen where the majority of the spin is localized.

Sample Trapping energy (eV) Unrelaxed O–O distance (Å) Relaxed O–O distance (Å) O coordination number

1 1.16 2.61 2.23 2
2 1.00 2.61 2.39 3
3 1.39 2.55 2.37 3
4 1.49 2.68 2.12 2
5 1.32 2.46 2.47 2
6 1.10 2.91 2.61 2
7 1.34 2.41 2.10 3
8 1.42 2.65 2.53 2
9 1.08 2.69 2.59 2
10 1.29 2.69 2.39 2

Figure 6. The spin density of the hole polaron in a-Al2O3, and the 
direction of relaxation of the ions. The Al ions are coloured blue 
and the O are red.
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trapping in metal oxides could be predicted by examining 
the fundamental orbital character of the ions in the system 
and the composition of the bands. These results predict that 
the trapping of positive charge can be much more severe 
and stable in amorphous alumina rather than in crystalline 
samples.
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