1,127 research outputs found

    Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach

    Get PDF
    We implement for the first time the simulated annealing method (SAM) to the problem of searching for the global minimum in the hyper-surface of the chi-square function which depends on the values of the parameters of a Skyrme type effective nucleon-nucleon interaction. We undertake a realistic case of fitting the values of the Skyrme parameters to an extensive set of experimental data on the ground state properties of many nuclei ranging from normal to exotic ones. The set of experimental data used in our fitting procedure includes the radii for the valence 1d5/21d_{5/2} and 1f7/21f_{7/2} neutron orbits in the 17^{17}O and 41^{41}Ca nuclei, respectively, and the breathing mode energies for several nuclei, in addition to the typically used data on binding energy, charge radii and spin-orbit splitting. We also include in the fit the critical density ρcr\rho_{cr} and further constrain the values of the Skyrme parameters by requiring that (i) the quantity P=3ρdSdρP = 3\rho \frac{dS}{d\rho}, directly related to the slope of the symmetry energy SS, must be positive for densities up to 3ρ03\rho_0 (ii) the enhancement factor κ\kappa, associated with the isovector giant dipole resonance, should lie in the range of 0.10.50.1 - 0.5 and (iii) the Landau parameter G0G_0^\prime is positive at ρ=ρ0\rho = \rho_0. We provide simple but consistent schemes to account for the center of mass corrections to the binding energy and charge radii.Comment: 33 pages, 4 figures, Phys. Rev. C (in press

    Critical densities for the Skyrme type effective interactions

    Get PDF
    We use the stability conditions of the Landau parameters for the symmetric nuclear matter and pure neutron matter to calculate the critical densities for the Skyrme type effective nucleon-nucleon interactions. We find that the critical density can be maximized by adjusting appropriately the values of the enhancement factor κ\kappa associated with isovector giant dipole resonance, the quantity LL which is directly related to the slope of the symmetry energy and the Landau parameter G0G_0^\prime. However, restricting κ\kappa, LL and G0G_0^\prime to vary within acceptable limits reduces the maximum value for the critical density ρ~cr\tilde\rho_{cr} by 25\sim 25%. We also show that among the various quantities characterizing the symmetric nuclear matter, ρ~cr\tilde\rho_{cr} depends strongly on the isoscalar effective mass m/mm^*/m and surface energy coefficient EsE_s. For realistic values of m/mm^*/m and EsE_s we get ρ~cr=2ρ0\tilde\rho_{cr} = 2\rho_0 to 3ρ0 3\rho_0 (ρ0=0.16\rho_0 = 0.16fm3^{-3}).Comment: 10 pages, 3 figures. Physicsl Review C (in press

    Consequences of self-consistency violations in Hartree-Fock random-phase approximation calculations of the nuclear breathing mode energy

    Get PDF
    We provide for the first time accurate assessments of the consequences of violations of self-consistency in the Hartree-Fock based random phase approximation (RPA) as commonly used to calculate the energy EcE_c of the nuclear breathing mode. Using several Skyrme interactions we find that the self-consistency violated by ignoring the spin-orbit interaction in the RPA calculation causes a spurious enhancement of the breathing mode energy for spin unsaturated systems. Contrarily, neglecting the Coulomb interaction in the RPA or performing the RPA calculations in the TJ scheme underestimates the breathing mode energy. Surprisingly, our results for the 90^{90}Zr and 208^{208}Pb nuclei for several Skyrme type effective nucleon-nucleon interactions having a wide range of nuclear matter incompressibility (Knm215275K_{nm} \sim 215 - 275 MeV) and symmetry energy (J2737J \sim 27 - 37 MeV) indicate that the net uncertainty (δEc0.3\delta E_c \sim 0.3 MeV) is comparable to the experimental one.Comment: Revtex file (11 pages), Accepted for the publication in Phys. Rev.

    Continuous phase transition and negative specific heat in finite nuclei

    Get PDF
    The liquid-gas phase transition in finite nuclei is studied in a heated liquid-drop model where the nuclear drop is assumed to be in thermodynamic equilibrium with its own evaporated nucleonic vapor conserving the total baryon number and isospin of the system. It is found that in the liquid-vapor coexistence region the pressure is not a constant on an isotherm indicating that the transition is continuous. At constant pressure, the caloric curve shows some anomalies, namely, the systems studied exhibit negative heat capacity in a small temperature domain. The dependence of this specific feature on the mass and isospin of the nucleus, Coulomb interaction and the chosen pressure is studied. The effects of the presence of clusters in the vapor phase on specific heat have also been explored.Comment: 18 pages, 13 figures; Phys. Rev. C (in press

    Isoscalar Giant Dipole Resonance and Nuclear Matter Incompressibility Coefficient

    Get PDF
    We present results of microscopic calculations of the strength function, S(E), and alpha-particle excitation cross sections sigma(E) for the isoscalar giant dipole resonance (ISGDR). An accurate and a general method to eliminate the contributions of spurious state mixing is presented and used in the calculations. Our results provide a resolution to the long standing problem that the nuclear matter incompressibility coefficient, K, deduced from sigma(E) data for the ISGDR is significantly smaller than that deduced from data for the isoscalar giant monopole resonance (ISGMR).Comment: 4 pages using revtex 3.0, 3 postscript figures created by Mathematica 4.

    Nuclear matter incompressibility coefficient in relativistic and nonrelativistic microscopic models

    Get PDF
    We systematically analyze the recent claim that nonrelativistic and relativistic mean field (RMF) based random phase approximation (RPA) calculations for the centroid energy E_0 of the isoscalar giant monopole resonance yield for the nuclear matter incompressibility coefficient, K_{nm}, values which differ by about 20%. For an appropriate comparison with the RMF based RPA calculations, we obtain the parameters for the Skyrme force used in the nonrelativistic model by adopting the same procedure as employed in the determination of the NL3 parameter set of an effective Lagrangian used in the RMF model. Our investigation suggest that the discrepancy between the values of K_{nm} predicted by the relativistic and nonrelativistic models is significantly less than 20%.Comment: Revtex file (13 pages), appearing in PRC-Rapid Com

    Exploring the extended density-dependent Skyrme effective forces for normal and isospin-rich nuclei to neutron stars

    Full text link
    We parameterize the recently proposed generalized Skyrme effective force (GSEF) containing extended density dependence. The parameters of the GSEF are determined by the fit to several properties of the normal and isospin-rich nuclei. We also include in our fit a realistic equation of state for the pure neutron matter up to high densities so that the resulting Skyrme parameters can be suitably used to model the neutron star with the "canonical" mass (1.4M\sim 1.4 M_\odot). For the appropriate comparison we generate a parameter set for the standard Skyrme effective force (SSEF) using exactly the same set of the data as employed to determine the parameters of the GSEF. We find that the GSEF yields larger values for the neutron skin thickness which are closer to the recent predictions based on the isospin diffusion data. The Skyrme parameters so obtained are employed to compute the strength function for the isoscalar giant monopole, dipole and quadrupole resonances. It is found that in the case of GSEF, due to the the larger value of the nucleon effective mass the values of centroid energies for the isoscalar giant resonances are in better agreement with the corresponding experimental data in comparison to those obtained using the SSEF. We also present results for some of the key properties associated with the neutron star of "canonical" mass and for the one with the maximum mass.Comment: 45pages, 16 figure

    Attributional style of African-American adolescents

    Get PDF
    This study ascertains how positive and negative life events are viewed by stigmatized youngsters. The causal attributions of a sample of 139 at -risk AfricanAmerican adolescents are analyzed in a doubly multivariate repeated measures design. These students were participants in either the federally funded Summer Training and Education Program or the Student Academic and Leadership Enhancement Program funded by the Detroit Compact. Previous research on these students indicated that they have higher than norm global self-concepts and their locus of control is more external than would be expected for their age. The findings of the current study suggest that the attributions these youngsters ascribed to positive events were significantly more internal, stable, and global than the attributions for negative events. An ancillary outcome of this study is to report psychometric information regarding the use of The Attributional Style Questionnaire
    corecore