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Critical densities for the Skyrme type effective interactions
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Abstract

We use the stability conditions of the Landau parameters for the symmetric nuclear matter and

pure neutron matter to calculate the critical densities for the Skyrme type effective nucleon-nucleon

interactions. We find that the critical density can be maximized by adjusting appropriately the

values of the enhancement factor κ associated with isovector giant dipole resonance, the quantity

L which is directly related to the slope of the symmetry energy and the Landau parameter G′

0.

However, restricting κ, L and G′

0 to vary within acceptable limits reduces the maximum value for

the critical density ρ̃cr by∼ 25%. We also show that among the various quantities characterizing the

symmetric nuclear matter, ρ̃cr depends strongly on the isoscalar effective mass m∗/m and surface

energy coefficient Es. For realistic values of m
∗/m and Es we get ρ̃cr = 2ρ0 to 3ρ0 (ρ0 = 0.16fm−3).

PACS numbers: 21.30.Fe, 21.60.Jz,21.65.+f, 21.60.+c
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There are many different parameterizations of the Skyrme type effective nucleon-nucleon

interaction as recently reviewed in Ref. [1]. Values of the Skyrme parameters are usually

obtained by fitting the results of the Hartree-Fock calculations for the binding energies,

charge radii and spin-orbit splittings of a few closed shell nuclei to the observed ones using

a least square procedure. The Skyrme parameters are also constrained to yield appropriate

values for some properties of the infinite symmetric nuclear matter at the saturation density

ρnm. Over time, several improvements were made by appropriately treating the center of

mass correction to the binding energy, modifying the spin-orbit part of the interaction and

including in the least square fit the equation of state (EOS) for the pure neutron matter

obtained from a realistic interaction [2, 3]. Nevertheless, not all the Skyrme parameters are

well determined in this way.

Recently, it has been shown in Ref. [4] that a more realistic parameterization of the

Skyrme interaction can be obtained by subjecting it to stability requirements of the EOS

defined by the inequality conditions for the Landau parameters for symmetric nuclear matter

and pure neutron matter. In other words, few of the Skyrme parameters not well determined

by the experimental data used in the least square procedure can be restricted by requiring

that the inequality conditions are satisfied up to a maximum value for a nuclear matter

density, also referred to as the critical density ρcr. A very recent systematic study carried

out in Ref. [5] using several Skyrme interactions indicates that the density dependence

of the symmetry energy coefficient J plays a critical role in determining the properties of

neutron star. Out of 87 different parameterizations for the Skyrme interaction considered

in Ref. [5] only 27 of them, having a positive slope for the symmetry energy coefficient

at nuclear matter densities ρ up to 3ρ0 (ρ0 = 0.16fm−3), are found to be suitable for the

neutron star model. Thus, it appears that the parameters of the Skyrme interactions can

be better constrained by combining the findings of Refs. [4] and [5].

In the present work we study the dependence of ρcr on the nuclear matter saturation den-

sity ρnm, binding energy per nucleon B/A, isoscalar effective mass m∗/m, incompressibility

coefficient Knm, surface energy Es, and symmetry energy coefficient J , as also considered

in Ref. [4]. It must be emphasized that we determine ρcr in terms of the enhancement

factor κ, the coefficient L = 3ρdJ/dρ and the Landau parameter G′

0 (at ρnm) instead of the

combinations tixi (i = 1, 2, and 3) of the Skyrme parameters ti and xi as used in Ref. [4].

Unlike the combinations tixi, the quantities κ, L and G′

0, which can be expressed in terms
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of the Skyrme parameters, are related to some physical processes. The enhancement factor

κ accounts for the deviations from the Thomas-Reiche-Kuhn (TRK) sum rule in the case

of the isovector giant dipole resonance. The value of κ at the ρnm is expected to be ∼ 0.5

[2, 6]. The slope of the symmetry energy coefficient must be positive for ρ up to 3ρ0, so

that resulting Skyrme interaction can be suitable for the study of the properties of neutron

stars [5]. The Landau parameter G′

0 must be positive at ρ ≤ ρnm in order to appropriately

describe the position of the isovector M1 and Gamow-Teller states [6]. We find that by

restricting the values of κ, L and G′

0 within the acceptable limits, the maximum critical

densities are lowered by about 25% compared to the ones obtained without such restrictions

[4]. The constrains proposed in the present work not only maximizes the value of the critical

density, but also ensures that the resulting Skyrme interaction can be used to study the bulk

properties of finite nuclei as well as those of neutron stars.

Recently [1, 7] a generalized form for the Skyrme energy density functional has been

obtained using the Hohenberg-Kohn-Sham approach. However, in the present work we

restrict ourselves to the energy density functional associated with the commonly used Skyrme

interaction [2, 8],

V12 = t0 (1 + x0P
σ
12) δ(r1 − r2)

+
1

2
t1 (1 + x1P

σ
12)×

[

←−
k 2

12δ(r1 − r2) + δ(r1 − r2)
−→
k 2

12

]

+t2 (1 + x2P
σ
12)
←−
k 12δ(r1 − r2)

−→
k 12

+
1

6
t3 (1 + x3P

σ
12) ρ

α

(

r1 + r2

2

)

δ(r1 − r2)

+iW0

←−
k 12δ(r1 − r2)(

−→σ1 +
−→σ2)×

−→
k 12 (1)

where, P σ
12 is the spin exchange operator, −→σ i is the Pauli spin operator,

−→
k 12 = −i(

−→
∇1 −

−→
∇2)/2 and

←−
k 12 = −i(

←−
∇1 −

←−
∇2)/2 . Here, the right and left arrows indicate that the mo-

mentum operators act on the right and on the left, respectively. The Skyrme parameters ti,

xi and α for a fixed value of W0 can be expressed in terms of the quantities associated with

the symmetric nuclear matter as follows [2, 4, 9].

t0 =
8

ρnm

[

(

−B/A+ (2m/m∗ − 3) (~2/10m) k2
f

) (

1
27
Knm − (1− 6m∗/5m) (~2/9m∗) k2

f

)

−B/A+ 1
9
Knm − (4m/3m∗ − 1) (~2/10m) k2

f

+

(

1−
5m

3m∗

)

~
2

10m
k2
f

]

, (2)
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t1 =
2

3
[T0 + Ts] , (3)

t2 = t1 +
8

3

[(

1

4
t0 +

1

24
t3ρ

α
nm

)

2m∗

~2

kf
π2

+G′

0

]

~
2

m∗ρnm
, (4)

t3 =
16

ρα+1
nm

(

−B/A+ (2m/m∗ − 3) (~2/10m) k2
f

)2

−B/A + 1
9
Knm − (4m/3m∗ − 1) (~2/10m) k2

f

, (5)

x0 =
4

t0ρnm

[

~
2

6m
k2
f −

1

24
t3(x3 +

1

2
)ρα+1

nm +
1

24
(t2 (4 + 5x2)− 3t1x1) ρnmk

2
f − J

]

−
1

2
, (6)

x1 =
1

t1

[

4
~
2κ

mρnm
− t2(2 + x2)

]

− 2, (7)

x2 =
1

4t2
[8T0 − 3t1 − 5t2] , (8)

x3 = −
8

αt3ρα+1
nm

[

~
2

6m
k2
f −

1

12
((4 + 5x2)t2 − 3t1x1) ρnmk

2
f − 3J + L

]

−
1

2
, (9)

α =
B/A− 1

9
Knm + (4m/3m∗ − 1) (~2/10m) k2

f

−B/A + (2m/m∗ − 3) (~2/10m) k2
f

, (10)

where,

T0 =
1

8
(3t1 + (5 + 4x2)t2) =

~
2

mρnm

( m

m∗
− 1

)

, (11)

Ts =
1

8
[9t1 − (5 + 4x2)t2] , (12)

and

kf =

(

3π2

2
ρnm

)1/3

. (13)

In Eqs. (2)-(10), the various quantities characterizing the nuclear matter are the binding

energy per nucleon B/A, isoscalar effective mass m∗/m, nuclear matter incompressibility

coefficient Knm, symmetry energy coefficient J , the coefficient L which is directly related

to the slope of the symmetry energy coefficient (L = 3ρdJ/dρ), enhancement factor κ and

Landau parameter G′

0. All these quantities are taken at the saturation density ρnm. It must
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be pointed out that we include consistently all terms in the energy density functional. In

particular, the expression for the parameter G′

0 used in the Eq. (4) is consistent with the

energy density functional obtained using Eq. (1). For a more generalized Skyrme energy

density functional, the expression for G′

0 should be appropriately modified following Ref.

[7]. Once, T0 is known, Ts can be calculated for a given value of the surface energy Es as

[4],

Es = 8πr20

∫ ρnm

0

dρ

[

~
2

36m
−

5

36
T0ρ+

1

8
Tsρ−

m∗

~2
Vsoρ

2

]1/2

[B(ρnm)/A− B(ρ)/A]1/2 (14)

where, B(ρ)/A is the binding energy per nucleon given by,

B(ρ)

A
= −

[

3~2

10m∗
k2
f +

3

8
t0ρ+

1

16
t3ρ

α+1

]

(15)

and,

r0 =

[

3

4πρnm

]1/3

, Vso =
9

16
W0

2. (16)

The manner in which Eqs. (2) - (10) can be used to evaluate the Skyrme parameters ti,

xi and α is as follows. First, the parameters t0 and α can be obtained from Eqs. (2) and

(10), respectively. Then, the parameter t3 can be calculated using Eq. (5). Next, T0 and

Ts can be calculated using Eqs. (11) and (14), respectively. Once, the combinations T0 and

Ts of the Skyrme parameters are known, one can calculate the remaining parameters in the

following sequence, t1, t2, x2, x1, x3 and x0.

The stability criteria requires that [10],

Xl > −(2l + 1), (17)

where, Xl stands for the Landau parameters Fl, F
′

l , Gl and G′

l for a given multipolarity l.

The Skyrme interaction only contains monopolar and dipolar contributions to the particle-

hole interaction so that all Landau parameters are zero for l > 1. Thus, there are 12 different

Landau parameters, i.e., Fl, F
′

l , Gl and G′

l (l = 0, 1) for the symmetric nuclear matter and

F
(n)
l , G

(n)
l (l = 0, 1) for the pure neutron matter. Each of these Landau parameters must

satisfy the inequality condition given by Eq. (17). Using the expressions for the Landau

parameters in terms of the Skyrme parameters, given in Refs. [4], one can obtain the values

of the Landau parameters at any density for a given set of the Skyrme parameters. Thus,
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the critical density which is nothing but the maximum density up to which all the inequality

conditions are met can be easily determined.

We have compiled the values of κ, L and G′

0 for several parameterization of the Skyrme

interaction presented in Refs. [2,3,11-16]. We find that the values of κ, L and G′

0 vary

over a wide ranges 0 − 2, 40 − 160 MeV and −0.15 − 1.0, respectively. This is due to the

fact that the experimental data used in the least-square procedure to fit the values of the

Skyrme parameters can not constrain well the values of these quantities. These quantities

can be constrained by requiring a reasonable value for the critical density. In what follows,

we shall refer to the set of standard values for six quantities ρnm = 0.16fm−3, B/A = 16

MeV, Knm = 230 MeV, m∗/m = 0.7, Es = 18 MeV and J = 32MeV in short as the STD

values for the nuclear matter input as used in Ref. [4].

We now study the dependence of ρcr on the ρnm, B/A, m∗/m, Knm, Es and J . For a

given set of values for these quantities, we calculate the maximum value of ρcr by varying

κ, L and G′

0 at the ρnm within acceptable limits. We denote the maximum value of the

critical density by ρ̃cr. It must be emphasized here that the present work differs from the

one performed in Ref. [4] by the fact that we constrain the values of κ, L and G′

0, whereas,

in Ref. [4], the value of ρ̃cr was calculated by varying the combinations tixi (i = 1, 2, and

3) of Skyrme parameters with no restrictions. We find that if the space of the parameters

tixi is not restricted, it may lead to an unreasonable values of κ and L. As an example, for

the STD values of nuclear matter input, ρ̃cr becomes 3.5ρ0 for κ = 1.0, L = 36 MeV and

G′

0 = 0.20 (at ρ0). The value of G′

0 seems reasonable, but the value of κ = 1.0 is a little too

large [2, 6]. Further, we find that for ρ > ρ0 the value of L decreases with increasing ρ and

it becomes negative for ρ > 1.6ρ0, which makes the interaction not favorable for the neutron

star model.

In Fig. 1 we have displayed the results for ρ̃cr obtained by varying the various quantities

associated with the nuclear matter around their standard values. To calculate ρ̃cr we allow

for 0.25 ≤ κ ≤ 0.5, 0 ≤ L ≤ 100 MeV and 0 ≤ G′

0 ≤ 0.5 at the ρnm. We further demand

that L > 0 at 3ρ0. Fig. 1 shows that ρ̃cr depends strongly on m∗/m and Es. Whereas, ρ̃cr

depends weakly on ρnm, B/A and Knm and it is almost independent of J . These features for

ρ̃cr are qualitatively similar to the ones presented in Ref. [4]. However, due to the restrictions

imposed on the values of κ, L and G′

0, the values of ρ̃cr becomes smaller than that obtained

in Ref. [4] by up to 25%. For m∗/m = 0.6 (0.7) and keeping all the other nuclear matter
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quantities equal to their standard values, we get ρ̃cr = 4.5ρ0 (2.8ρ0) compared to 6ρ0 (3.5ρ0)

obtained in Ref. [4].

It may be instructive to present the values of κ, L and G′

0 required to obtained ρ̃cr for a

given set of values for the nuclear matter input. We find that κ lies in the range of 0.45−0.5

for variations in the nuclear matter input by up to ±15% relative to their standard values.

These values of κ clearly reflects the fact that restricting κ to take values in the range of

0.25 − 0.5 delimits the ρ̃cr to a lower value. In Figs. 2a and 2b we have plotted the values

of L and G′

0 (at ρnm), respectively, which are needed to yield the ρ̃cr. We see that L varies

from 20 to 60 MeV for different values of the nuclear matter input. For the STD values

of nuclear matter input we find that L = 47 MeV at ρ = ρ0. This value is quite large

compared to the values of L = 35, 27 and 16 MeV associated with the the Skz0, Skz1 and

Skz2 interactions [4], respectively, which were obtained for the same standard values of the

nuclear matter input, but by varying the combinations t1x1 and t2x2 with no restrictions

and keeping t3x3 fixed to some arbitrary values. We see from Fig. 2b that, except for J ,

the value of G′

0 (at ρnm) depends strongly on the values of the various quantities associated

with nuclear matter. The dependence of G′

0 on the surface energy coefficient Es is the most

pronounced one. We note that Es is mainly determined by the ground state properties of

light nuclei. Thus, the center of mass correction to the binding energy and charge radii

must be appropriately taken into account as they are very important for light nuclei and

may affect the values obtained for Es. We see from Fig. 2b that G′

0 tends to vanish rapidly

with increasing Es.

As pointed out earlier (see from Fig. 1), the dependence of ρ̃cr on ρnm, J , and B/A is

quite weak. Thus, it may be sufficient to calculate ρ̃cr as a function of m∗/m, Es and Knm

only. In Fig. 3 we display our results for the variation of Es versus m∗/m, obtained for

fixed values of ρ̃cr with the remaining nuclear matter quantities kept equal to their standard

values. It can be seen from Fig. 3 that for a fixed value of ρ̃cr, Es decreases with the increase

in m∗/m. It is quite interesting to note that for Es = 18 ± 1 MeV (as most of the Skyrme

interactions yield), ρ̃cr = 2ρ0 and 3ρ0 for m∗/m = 0.72− 0.85 and 0.63− 0.73, respectively.

For ρ̃cr = 4ρ0 one must have m∗/m ∼ 0.65 for not too low value of Es. The value of m∗/m

is also constrained by the centroid energy of the isoscalar giant quadrupole resonance [17]

which favors m∗/m ≥ 0.7. Thus, for reasonable values of Es and m∗/m, one may obtain a

Skyrme interaction with ρ̃cr = 2ρ0 to 3ρ0.
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In summary, we have used the stability conditions of the Landau parameters for the

symmetric nuclear matter and pure neutron matter to calculate the critical densities for the

Skyrme type effective nucleon-nucleon interactions. We find that the critical density can be

maximized by appropriately adjusting the values of the enhancement factor κ, coefficient L

and the Landau parameter G′

0 as these quantities are not well determined by the Skyrme

parameters, conventionally obtained by fitting the experimental data for the ground state

properties of finite nuclei. We exploit the fact that i) The value of κ should be in the range

of 0.25− 0.5, needed to describe the TRK sum rule for the isovector giant dipole resonance

[2, 6], ii) L > 0 for 0 ≤ ρ ≤ 3ρ0; a condition necessary for a Skyrme interaction to be suitable

for studying the properties of neutron star [5]. and iii) G′

0 > 0 in order to reproduce the

energies of the isovector M1 and Gamow-Teller states [6]. The maximum value of the critical

density so obtained is lower by up to 25% compared to the ones obtained without any such

restrictions [4]. We show that the critical density obtained for realistic values of the surface

energy coefficient (Es = 18± 1 MeV) and isoscalar effective mass (m∗/m = 0.7± 0.1) lie in

the range of 2ρ0 to 3ρ0. Finally, we would like to remark that the pairing correlations were

not included in the present work. It may be worthwhile to investigate the influence of the

pairing correlations on the various quantities associated with the nuclear matter which may

alter the value of the critical density.
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FIG. 1: The dependence of critical density ρ̃cr on the relative variation of ρnm (dotted), B/A

(dashed), m∗/m (solid), Knm (open circles), Es (dashed-dot), and J (dashed-filled squares) around

their standard values.

FIG. 2: Variation of (a) the coefficient L and (b) the Landau parameter G′

0 as a function of the

various quantities associated with nuclear matter at ρnm. The values of L and G′

0 are determined

by maximizing the critical density for a given set of values for the nuclear matter quantities.

FIG. 3: Variations of the surface energy coefficient Es at ρnm as a function of the effective mass

m∗/m for fixed values of the critical density ρ̃cr = 2ρ0, 3ρ0 and 4ρ0 as labeled. All the other nuclear

matter quantities are kept equals to their standard values.
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