7 research outputs found

    A novel fractional micro-plasma radio-frequency technology for the treatment of facial scars and rhytids: A pilot study

    Get PDF
    Introduction: Fractional ablative and non-ablative lasers have gained popularity in the treatment of acne scars and rhytids due to their efficacy and improved tolerability. Plasma and radio frequency (RF) have also emerged as methods for ablative or non-ablative energy delivery. We report preliminary experience with a novel fractional micro-plasma RF device for the treatment of facial acne scars and rhytids. Methods: Sixteen patients with facial acne scars or rhytids were treated at 4-week intervals. Treatment parameters were titrated to an immediate end point of moderate erythema. The clinical end point for cessation of treatment was the attainment of satisfactory clinical results. Results were monitored photographically up to 3 months after treatment. Results: Acne scars showed marked improvement after two to four treatments. Facial rhytids demonstrated reduced depth after two treatments and marked improvement after four treatments. Treatment was well tolerated by all participants, with transient erythema and short downtime. These results provide initial evidence for the safety and effectiveness of fractional micro-plasma RF as a low-downtime and well-tolerated modality for the treatment of acne scars and facial rhytids

    ERAP140, a Conserved Tissue-Specific Nuclear Receptor Coactivator

    No full text
    We report here the identification and characterization of a novel nuclear receptor coactivator, ERAP140. ERAP140 was isolated in a screen for ERα-interacting proteins using the ERα ligand binding domain as a probe. The ERAP140 protein shares no sequence and has little structural homology with other nuclear receptor cofactors. However, homologues of ERAP140 have been identified in mouse, Drosophila, and Caenorhabditis elegans. The expression of ERAP140 is cell and tissue type specific and is most abundant in the brain, where its expression is restricted to neurons. In addition to interacting with ERα, ERAP140 also binds ERβ, TRβ, PPARγ, and RARα. ERAP140 interacts with ERα via a noncanonical interaction motif. The ERα-ERAP140 association can be competed by coactivator NR boxes, indicating ERAP140 binds ERα on a surface similar to that of other coactivators. ERAP140 can enhance the transcriptional activities of nuclear receptors with which it interacts. In vivo, ERAP140 is recruited by estrogen-bound ERα to the promoter region of endogenous ERα target genes. Furthermore, the E(2)-induced recruitment of ERAP140 to the promoter follows a cyclic pattern similar to that of other coactivators. Our results suggest that ERAP140 represents a distinct class of nuclear receptor coactivators that mediates receptor signaling in specific target tissues
    corecore