149 research outputs found

    B cells are capable of independently eliciting rapid reactivation of encephalitogenic CD4 T cells in a murine model of multiple sclerosis

    Get PDF
    <div><p>Recent success with B cell depletion therapies has revitalized efforts to understand the pathogenic role of B cells in Multiple Sclerosis (MS). Using the adoptive transfer system of experimental autoimmune encephalomyelitis (EAE), a murine model of MS, we have previously shown that mice in which B cells are the only MHCII-expressing antigen presenting cell (APC) are susceptible to EAE. However, a reproducible delay in the day of onset of disease driven by exclusive B cell antigen presentation suggests that B cells require optimal conditions to function as APCs in EAE. In this study, we utilize an <i>in vivo</i> genetic system to conditionally and temporally regulate expression of MHCII to test the hypothesis that B cell APCs mediate attenuated and delayed neuroinflammatory T cell responses during EAE. Remarkably, induction of MHCII on B cells following the transfer of encephalitogenic CD4 T cells induced a rapid and robust form of EAE, while no change in the time to disease onset occurred for recipient mice in which MHCII is induced on a normal complement of APC subsets. Changes in CD4 T cell activation over time did not account for more rapid onset of EAE symptoms in this new B cell-mediated EAE model. Our system represents a novel model to study how the timing of pathogenic cognate interactions between lymphocytes facilitates the development of autoimmune attacks within the CNS.</p></div

    Very Low Affinity B Cells Form Germinal Centers, Become Memory B Cells, and Participate in Secondary Immune Responses When Higher Affinity Competition Is Reduced

    Get PDF
    To understand the relationship between the affinity of the B cell antigen receptor (BCR) and the immune response to antigen, two lines of immunoglobulin H chain transgenic (Tg) mice were created. H50Gμa and T1(V23)μa mice express μ H chain transgenes that associate with the λ1 L chains to bind the (4-hydroxy-3-nitrophenyl)acetyl hapten with association constants (Kas) of only 1.2 × 105 M−1 and 3 × 104 M−1, respectively. Both lines mounted substantial antibody-forming cell (AFC) and germinal center (GC) responses. H50Gμa Tg mice also generated memory B cells. T1(V23)μa B cells formed AFC and GCs, but were largely replaced in late GCs by antigen-specific cells that express endogenous BCRs. Thus, B lymphocytes carrying BCRs with affinities previously thought to be irrelevant in specific immune responses are in fact capable of complete T cell–dependent immune responses when relieved of substantial competition from other B cells. The failure to observe such B cells normally in late primary responses and in memory B cell populations is the result of competition, rather than an intrinsic inability of low affinity B cells

    New markers for murine memory B cells that define mutated and unmutated subsets

    Get PDF
    The study of murine memory B cells has been limited by small cell numbers and the lack of a definitive marker. We have addressed some of these difficulties with hapten-specific transgenic (Tg) mouse models that yield relatively large numbers of antigen-specific memory B cells upon immunization. Using these models, along with a 5-bromo-2′-deoxyuridine (BrdU) pulse-label strategy, we compared memory cells to their naive precursors in a comprehensive flow cytometric survey, thus revealing several new murine memory B cell markers. Most interestingly, memory cells were phenotypically heterogeneous. Particularly surprising was the finding of an unmutated memory B cell subset identified by the expression of CD80 and CD35. We confirmed these findings in an analogous V region knock-in mouse and/or in non-Tg mice. There also was anatomic heterogeneity, with BrdU+ memory cells residing not just in the marginal zone, as had been thought, but also in splenic follicles. These studies impact the current understanding of murine memory B cells by identifying new phenotypes and by challenging assumptions about the location and V region mutation status of memory cells. The apparent heterogeneity in the memory compartment implies either different origins and/or different functions, which we discuss
    • …
    corecore