9 research outputs found

    Non-autonomous consequences of cell death and other perks of being metazoan

    No full text

    Drosophila p53 isoforms differentially regulate apoptosis and apoptosis-induced proliferation

    No full text
    Irradiated or injured cells enter apoptosis, and in turn, promote proliferation of surrounding unaffected cells. In Drosophila, apoptotic cells have an active role in proliferation, where the caspase Dronc and p53 induce mitogen expression and growth in the surrounding tissues. The Drosophila p53 gene structure is conserved and encodes at least two protein isoforms: a full-length isoform (Dp53) and an N-terminally truncated isoform (DΔNp53). Historically, DΔNp53 was the first p53 isoform identified and was thought to be responsible for all p53 biological activities. It was shown that DΔNp53 induces apoptosis by inducing the expression of IAP antagonists, such as Reaper. Here we investigated the roles of Dp53 and DΔNp53 in apoptosis and apoptosis-induced proliferation. We found that both isoforms were capable of activating apoptosis, but that they each induced distinct IAP antagonists. Expression of DΔNp53 induced Wingless (Wg) expression and enhanced proliferation in both 'undead cells' and in 'genuine' apoptotic cells. In contrast to DΔNp53, Dp53 did not induce Wg expression in the absence of the endogenous p53 gene. Thus, we propose that DΔNp53 is the main isoform that regulates apoptosis-induced proliferation. Understanding the roles of Drosophila p53 isoforms in apoptosis and in apoptosis-induced proliferation may shed new light on the roles of p53 isoforms in humans, with important implications in cancer biology

    Drosophila Models of Cell Polarity and Cell Competition in Tumourigenesis

    No full text
    Cell competition is an important surveillance mechanism that measures relative fitness between cells in a tissue during development, homeostasis, and disease. Specifically, cells that are >less fit> (losers) are actively eliminated by relatively >more fit> (winners) neighbours, despite the less fit cells otherwise being able to survive in a genetically uniform tissue. Originally described in the epithelial tissues of Drosophila larval imaginal discs, cell competition has since been shown to occur in other epithelial and non-epithelial Drosophila tissues, as well as in mammalian model systems. Many genes and signalling pathways have been identified as playing conserved roles in the mechanisms of cell competition. Among them are genes required for the establishment and maintenance of apico-basal cell polarity: the Crumbs/Stardust/Patj (Crb/Sdt/Patj), Bazooka/Par-6/atypical Protein Kinase C (Baz/Par-6/aPKC), and Scribbled/Discs large 1/Lethal (2) giant larvae (Scrib/Dlg1/L(2)gl) modules. In this chapter, we describe the concepts and mechanisms of cell competition, with emphasis on the relationship between cell polarity proteins and cell competition, particularly the Scrib/Dlg1/L(2)gl module, since this is the best described module in this emerging field.JELM is supported by Australian Research Council (Grant DP170102549), NFL is supported by a La Trobe University PhD student scholarship, and HER is supported by funds from the School for Molecular Science at La Trobe University

    Live to die another way: modes of programmed cell death and the signals emanating from dying cells

    No full text
    corecore