270 research outputs found
Family of generalized random matrix ensembles
Using the Generalized Maximium Entropy Principle based on the nonextensive q
entropy a new family of random matrix ensembles is generated. This family
unifies previous extensions of Random Matrix Theory and gives rise to an
orthogonal invariant stable Levy ensemble with new statistical properties. Some
of them are analytically derived.Comment: 13 pages and 2 figure
Levy flights in quenched random force fields
Levy flights, characterized by the microscopic step index f, are for f<2 (the
case of rare events) considered in short range and long range quenched random
force fields with arbitrary vector character to first loop order in an
expansion about the critical dimension 2f-2 in the short range case and the
critical fall-off exponent 2f-2 in the long range case. By means of a dynamic
renormalization group analysis based on the momentum shell integration method,
we determine flows, fixed point, and the associated scaling properties for the
probability distribution and the frequency and wave number dependent diffusion
coefficient. Unlike the case of ordinary Brownian motion in a quenched force
field characterized by a single critical dimension or fall-off exponent d=2,
two critical dimensions appear in the Levy case. A critical dimension (or
fall-off exponent) d=f below which the diffusion coefficient exhibits anomalous
scaling behavior, i.e, algebraic spatial behavior and long time tails, and a
critical dimension (or fall-off exponent) d=2f-2 below which the force
correlations characterized by a non trivial fixed point become relevant. As a
general result we find in all cases that the dynamic exponent z, characterizing
the mean square displacement, locks onto the Levy index f, independent of
dimension and independent of the presence of weak quenched disorder.Comment: 27 pages, Revtex file, 17 figures in ps format attached, submitted to
Phys. Rev.
Stochastic Feedback and the Regulation of Biological Rhythms
We propose a general approach to the question of how biological rhythms
spontaneously self-regulate, based on the concept of ``stochastic feedback''.
We illustrate this approach by considering the neuroautonomic regulation of the
heart rate. The model generates complex dynamics and successfully accounts for
key characteristics of cardiac variability, including the power spectrum,
the functional form and scaling of the distribution of variations, and
correlations in the Fourier phases. Our results suggest that in healthy systems
the control mechanisms operate to drive the system away from extreme values
while not allowing it to settle down to a constant output.Comment: 15 pages, latex2e using rotate and epsf, with 4 ps figures. Submitted
to PR
Anomalous Spreading of Power-Law Quantum Wave Packets
We introduce power-law tail quantum wave packets. We show that they can be
seen as eigenfunctions of a Hamiltonian with a physical potential. We prove
that the free evolution of these packets presents an asymptotic decay of the
maximum of the wave packets which is anomalous for an interval of the
characterizing power-law exponent. We also prove that the number of finite
moments of the wave packets is a conserved quantity during the evolution of the
wave packet in the free space.Comment: 5 pages, 3 figures, to appear in Phys. Rev. Let
Theory of Systematic Computational Error in Free Energy Differences
Systematic inaccuracy is inherent in any computational estimate of a
non-linear average, due to the availability of only a finite number of data
values, N. Free energy differences (DF) between two states or systems are
critically important examples of such averages in physical, chemical and
biological settings. Previous work has demonstrated, empirically, that the
``finite-sampling error'' can be very large -- many times kT -- in DF estimates
for simple molecular systems. Here, we present a theoretical description of the
inaccuracy, including the exact solution of a sample problem, the precise
asymptotic behavior in terms of 1/N for large N, the identification of
universal law, and numerical illustrations. The theory relies on corrections to
the central and other limit theorems, and thus a role is played by stable
(Levy) probability distributions.Comment: 5 pages, 4 figure
Geometry-controlled kinetics
It has long been appreciated that transport properties can control reaction
kinetics. This effect can be characterized by the time it takes a diffusing
molecule to reach a target -- the first-passage time (FPT). Although essential
to quantify the kinetics of reactions on all time scales, determining the FPT
distribution was deemed so far intractable. Here, we calculate analytically
this FPT distribution and show that transport processes as various as regular
diffusion, anomalous diffusion, diffusion in disordered media and in fractals
fall into the same universality classes. Beyond this theoretical aspect, this
result changes the views on standard reaction kinetics. More precisely, we
argue that geometry can become a key parameter so far ignored in this context,
and introduce the concept of "geometry-controlled kinetics". These findings
could help understand the crucial role of spatial organization of genes in
transcription kinetics, and more generally the impact of geometry on
diffusion-limited reactions.Comment: Submitted versio
Statistics of quantum transmission in one dimension with broad disorder
We study the statistics of quantum transmission through a one-dimensional
disordered system modelled by a sequence of independent scattering units. Each
unit is characterized by its length and by its action, which is proportional to
the logarithm of the transmission probability through this unit. Unit actions
and lengths are independent random variables, with a common distribution that
is either narrow or broad. This investigation is motivated by results on
disordered systems with non-stationary random potentials whose fluctuations
grow with distance.
In the statistical ensemble at fixed total sample length four phases can be
distinguished, according to the values of the indices characterizing the
distribution of the unit actions and lengths. The sample action, which is
proportional to the logarithm of the conductance across the sample, is found to
obey a fluctuating scaling law, and therefore to be non-self-averaging, in
three of the four phases. According to the values of the two above mentioned
indices, the sample action may typically grow less rapidly than linearly with
the sample length (underlocalization), more rapidly than linearly
(superlocalization), or linearly but with non-trivial sample-to-sample
fluctuations (fluctuating localization).Comment: 26 pages, 4 figures, 1 tabl
Bimodality and hysteresis in systems driven by confined L\'evy flights
We demonstrate occurrence of bimodality and dynamical hysteresis in a system
describing an overdamped quartic oscillator perturbed by additive white and
asymmetric L\'evy noise. Investigated estimators of the stationary probability
density profiles display not only a turnover from unimodal to bimodal character
but also a change in a relative stability of stationary states that depends on
the asymmetry parameter of the underlying noise term. When varying the
asymmetry parameter cyclically, the system exhibits a hysteresis in the
occupation of a chosen stationary state.Comment: 4 pages, 5 figures, 30 reference
Avalanches in the lung: A statistical mechanical model
We study a statistical mechanical model for the dynamics of lung inflation
which incorporates recent experimental observations on the opening of
individual airways by a cascade or avalanche mechanism. Using an exact mapping
of the avalanche problem onto percolation on a Cayley tree, we analytically
derive the exponents describing the size distribution of the first avalanches
and test the analytical solution by numerical simulations. We find that the
tree-like structure of the airways together with the simplest assumptions
concerning opening threshold pressures of each airway, is sufficient to explain
the existence of power-law distributions observed experimentally.Comment: 4 pages, Figures avaliable by mail from [email protected], REVTE
Anomalous diffusion and generalized Sparre-Andersen scaling
We are discussing long-time, scaling limit for the anomalous diffusion
composed of the subordinated L\'evy-Wiener process. The limiting anomalous
diffusion is in general non-Markov, even in the regime, where ensemble averages
of a mean-square displacement or quantiles representing the group spread of the
distribution follow the scaling characteristic for an ordinary stochastic
diffusion. To discriminate between truly memory-less process and the non-Markov
one, we are analyzing deviation of the survival probability from the (standard)
Sparre-Andersen scaling.Comment: 5 pages, 3 figure
- …