109 research outputs found

    Evidence for Majorana bound state in an iron-based superconductor

    Full text link
    The search for Majorana bound state (MBS) has recently emerged as one of the most active research areas in condensed matter physics, fueled by the prospect of using its non-Abelian statistics for robust quantum computation. A highly sought-after platform for MBS is two-dimensional topological superconductors, where MBS is predicted to exist as a zero-energy mode in the core of a vortex. A clear observation of MBS, however, is often hindered by the presence of additional low-lying bound states inside the vortex core. By using scanning tunneling microscope on the newly discovered superconducting Dirac surface state of iron-based superconductor FeTe1-xSex (x = 0.45, superconducting transition temperature Tc = 14.5 K), we clearly observe a sharp and non-split zero-bias peak inside a vortex core. Systematic studies of its evolution under different magnetic fields, temperatures, and tunneling barriers strongly suggest that this is the case of tunneling to a nearly pure MBS, separated from non-topological bound states which is moved away from the zero energy due to the high ratio between the superconducting gap and the Fermi energy in this material. This observation offers a new, robust platform for realizing and manipulating MBSs at a relatively high temperature.Comment: 27 pages, 11 figures, supplementary information include

    High-performance supercapacitors based on hierarchically porous carbons with a three-dimensional conductive network structure

    Get PDF
    Clews of polymer nanobelts (CsPNBs) have the advantages of inexpensive raw materials, simple synthesis and large output. Novel clews of carbon nanobelts (CsCNBs) have been successfully prepared by carbonizing CsPNBs and by KOH activation subsequently. From the optimized process, CsCNBs*4, with a specific surface area of 2291 m2 g−1 and a pore volume of up to 1.29 cm3 g−1, has been obtained. Fundamentally, the CsCNBs possess a three-dimensional conductive network structure, a hierarchically porous framework, and excellent hydrophilicity, which enable fast ion diffusion through channels and a large enough ion adsorption/desorption surface to improve electrochemical performance of supercapacitors. The product exhibits a high specific capacitance of 327.5 F g−1 at a current density of 0.5 A g−1 in a three-electrode system. The results also reveal a high-rate capacitance (72.2% capacitance retention at 500 mV s−1) and stable cycling lifetime (95% of initial capacitance after 15 000 cycles). Moreover, CsCNBs*4 provides a high energy density of 29.8 W h kg−1 at a power density of 345.4 W kg−1 in 1 M tetraethylammonium tetrafluoroborate/acetonitrile (TEABF4/AN) electrolyte. These inspiring results imply that this carbon material with a three-dimensional conductive network structure possesses excellent potential for energy storage

    Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor

    Full text link
    Majorana zero-modes (MZMs) are spatially-localized zero-energy fractional quasiparticles with non-Abelian braiding statistics that hold a great promise for topological quantum computing. Due to its particle-antiparticle equivalence, an MZM exhibits robust resonant Andreev reflection and 2e2/h quantized conductance at low temperature. By utilizing variable-tunnel-coupled scanning tunneling spectroscopy, we study tunneling conductance of vortex bound states on FeTe0.55Se0.45 superconductors. We report observations of conductance plateaus as a function of tunnel coupling for zero-energy vortex bound states with values close to or even reaching the 2e2/h quantum conductance. In contrast, no such plateau behaviors were observed on either finite energy Caroli-de Genne-Matricon bound states or in the continuum of electronic states outside the superconducting gap. This unique behavior of the zero-mode conductance reaching a plateau strongly supports the existence of MZMs in this iron-based superconductor, which serves as a promising single-material platform for Majorana braiding at a relatively high temperature

    Ultrahigh-content nitrogen-decorated nanoporous carbon derived from metal organic frameworks and its application in supercapacitors

    Get PDF
    Single electric double-layer capacitors cannot meet the growing demand for energy due to their insufficient energy density. Generally speaking, the supercapacitors introduced with pseudo-capacitance by doping heteroatoms (N, O) in porous carbon materials can obtain much higher capacitance than electric double-layer capacitors. In view of above merits, in this study, nanoporous carbon materials with ultrahigh N enrichment (14.23 wt%) and high specific surface area (942 m2 g−1) by in situ introduction of N-doped MOF (ZTIF-1, Organic ligands 5-methyltetrazole/C2H4N4) were produced. It was found that as supercapacitors' electrode materials, these nanoporous carbons exhibit a capacitance as high as 272 F g-1 at 0.1 A g−1, and an excellent cycle life (almost no attenuation after 10,000 cycles.). Moreover, the symmetric supercapacitors were assembled to further investigate the actual capacitive performance, and the capacitance shows up to 154 F g-1 at 0.1 A g−1. Such excellent properties may be attributed to a combination of a high specific surface area, ultrahigh nitrogen content and hierarchically porous structure. The results shown in this study fully demonstrate that the nanoporous carbon materials containing ultrahigh nitrogen content can be used as a potential electrode material in supercapacitors

    Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres and their application in lithium-sulfur batteries

    Get PDF
    Hollow carbon nanospheres (HCNs) with specific surface areas up to 2949 m2 g−1 and pore volume up to 2.9 cm3 g−1 were successfully synthesized from polyaniline‐co‐polypyrrole hollow nanospheres by carbonization and CO2 activation. The cavity diameter and wall thickness of HCNs can be easily controlled by activation time. Owing to their large inner cavity and enclosed structure, HCNs are desirable carriers for encapsulating sulfur. To better understand the effects of pore characteristics and sulfur contents on the performances of lithium‐sulfur batteries, three composites of HCNs and sulfur are prepared and studied in detail. The composites of HCNs with moderate specific surface areas and suitable sulfur content present a better performance. The first discharge capacity of this composite reaches 1401 mAh g−1 at 0.2 C. Even after 200 cycles, the discharge capacity remains at 626 mAh g−1

    Genome-wide characterization of phospholipase D family genes in allotetraploid peanut and its diploid progenitors revealed their crucial roles in growth and abiotic stress responses

    Get PDF
    Abiotic stresses such as cold, drought and salinity are the key environmental factors that limit the yield and quality of oil crop peanut. Phospholipase Ds (PLDs) are crucial hydrolyzing enzymes involved in lipid mediated signaling and have valuable functions in plant growth, development and stress tolerance. Here, 22, 22 and 46 PLD genes were identified in Arachis duranensis, Arachis ipaensis and Arachis hypogaea, respectively, and divided into α, β, γ, δ, ε, ζ and φ isoforms. Phylogenetic relationships, structural domains and molecular evolution proved the conservation of PLDs between allotetraploid peanut and its diploid progenitors. Almost each A. hypogaea PLD except for AhPLDα6B had a corresponding homolog in A. duranensis and A. ipaensis genomes. The expansion of Arachis PLD gene families were mainly attributed to segmental and tandem duplications under strong purifying selection. Functionally, the most proteins interacting with AhPLDs were crucial components of lipid metabolic pathways, in which ahy-miR3510, ahy-miR3513-3p and ahy-miR3516 might be hub regulators. Furthermore, plenty of cis-regulatory elements involved in plant growth and development, hormones and stress responses were identified. The tissue-specific transcription profiling revealed the broad and unique expression patterns of AhPLDs in various developmental stages. The qRT-PCR analysis indicated that most AhPLDs could be induced by specific or multiple abiotic stresses. Especially, AhPLDα3A, AhPLDα5A, AhPLDβ1A, AhPLDβ2A and AhPLDδ4A were highly up-regulated under all three abiotic stresses, whereas AhPLDα9A was neither expressed in 22 peanut tissues nor induced by any abiotic stresses. This genome-wide study provides a systematic analysis of the Arachis PLD gene families and valuable information for further functional study of candidate AhPLDs in peanut growth and abiotic stress responses

    DDX58 deficiency leads to triple negative breast cancer chemotherapy resistance by inhibiting Type I IFN-mediated signalling apoptosis

    Get PDF
    IntroductionTriple-negative breast cancer (TNBC) is characterized by its aggressive nature and absence of specific therapeutic targets, necessitating the reliance on chemotherapy as the primary treatment modality. However, the drug resistance poses a significant challenge in the management of TNBC. In this study, we investigated the role of DDX58 (DExD/H-box helicase 58), also known as RIG-I, in TNBC chemoresistance.MethodsThe relationship between DDX58 expression and breast cancer prognosis was investigated by online clinical databases and confirmed by immunohistochemistry analysis. DDX58 was knockout by CRISPR-Cas9 system (DDX58-KO), knockdown by DDX58-siRNA (DDX58-KD), and stably over expressed (DDX58-OE) by lentivirus. Western blotting, immunofluorescence and qPCR were used for related molecules detection. Apoptosis was analyzed through flow cytometry (Annexin V/7AAD apoptosis assay) and Caspase 3/7 activity assay.ResultsPatients with lower expression of DDX58 led to lower rate of pathological complete response (pCR) and worse prognosis by online databases and hospital clinical data. DDX58-KD cells showed multiple chemo-drugs resistance (paclitaxel, doxorubicin, 5-fluorouracil) in TNBC cell lines. Similarly, DDX58-KO cells also showed multiple chemo-drugs resistance in a dosage-dependent manner. In the CDX model, tumours in the DDX58-KO group had a 25% reduction in the tumour growth inhibition rate (IR) compared to wild-type (WT) group after doxorubicin (Dox) treatment. The depletion of DDX58 inhibited proliferation and promoted the migration and invasion in MDA-MB-231 cells. The findings of our research indicated that DDX58-KO cells exhibit a reduction in Dox-induced apoptosis both in vivo and in vitro. Mechanistically, Dox treatment leads to a significant increase in the expression of double-stranded RNAs (dsRNAs) and activates the DDX58-Type I interferon (IFN) signaling pathway, ultimately promoting apoptosis in TNBC cells.DiscussionIn the process of TNBC chemotherapy, the deficiency of DDX58 can inhibit Dox-induced apoptosis, revealing a new pathway of chemotherapy resistance, and providing a possibility for developing personalized treatment strategies based on DDX58 expression levels

    Optimal Course of Statins for Patients With Aneurysmal Subarachnoid Hemorrhage: Is Longer Treatment Better? A Meta-Analysis of Randomized Controlled Trials

    Get PDF
    Statins are used in clinical practice to prevent from complications such as cerebral vasospasm (CVS) after aneurysmal subarachnoid hemorrhage (aSAH). However, the efficacy and safety of statins are still controversial due to insufficient evidence from randomized controlled trials and inconsistent results of the existing studies. This meta-analysis aimed to systematically review the latest evidence on the time window and complications of statins in aSAH. The randomized controlled trials in the databases of The Cochrane Library, PubMed, Web of Science, Embase, CNKI, and Wanfang from January 2005 to April 2021 were searched and analyzed systematically. Data analysis was performed using Stata version 16.0. The fixed-effects model (M-H method) with effect size risk ratio (RR) was used for subgroups with homogeneity, and the random-effects model (D-L method) with effect size odds ratio (OR) was used for subgroups with heterogeneity. The primary outcomes were poor neurological prognosis and all-cause mortality, and the secondary outcomes were cerebral vasospasm (CVS) and statin-related complications. This study was registered with PROSPERO (International Prospective Register of Systematic Reviews; CRD42021247376). Nine studies comprising 1,464 patients were included. The Jadad score of the patients was 5–7. Meta-analysis showed that poor neurological prognosis was reduced in patients who took oral statins for 14 days (RR, 0.73 [0.55–0.97]; I2 = 0%). Surprisingly, the continuous use of statins for 21 days had no significant effect on neurological prognosis (RR, 1.04 [0.89–1.23]; I2 = 17%). Statins reduced CVS (OR, 0.51 [0.36–0.71]; I2 = 0%) but increased bacteremia (OR, 1.38 [1.01–1.89]; I2 = 0%). In conclusion, a short treatment course of statins over 2 weeks may improve neurological prognosis. Statins were associated with reduced CVS. Based on the pathophysiological characteristics of CVS and the evaluation of prognosis, 2 weeks could be the optimal time window for statin treatment in aSAH, although bacteremia may increase

    Facile synthesis of 2D ultrathin and ultrahigh specific surface hierarchical porous carbon nanosheets for advanced energy storage

    Get PDF
    Two dimensional (2D) porous carbon nanosheets (CNS) have attracted tremendous research interests in energy storage and conversion, such as supercapacitors (SCs) and lithium-sulfur batteries, because of their unique micromorphology, chemical stability and high specific surface area (SSA). Rational design and facile scalable synthesis of CNS with high SSA, low cost and ultrathin nanosheet structure is highly desired but hitherto remains a big challenge. Here, we report a novel synthesis method of 2D hierarchical porous CNS with ultrahigh SSA (2687 m2 g−1) and ultrathin structure by directly pyrolysing and activating a unique and abundant biomass sheet. The electrochemical characterisations show that the prepared CNS-4-1 materials as electrodes creates a good energy-storage capability, with the energy density being 91 Wh kg−1 for symmetric SCs in ionic liquids, which is the highest in the reported biomass-derived CNS materials for SCs applications so far. Besides, the CNS-5-1 also exhibits a high initial capacity of 1078 mAh g−1 at 0.1 C when it acted as a sulfur hosting material for lithium-sulfur batteries. More importantly, it also shows a 586 mAh g−1 reversible capacity and an approaching 100% coulombic efficiency after 500 cycles at a high rate of 1 C. These superior electrochemical properties of the CNS are mainly attributed to their unique 2D ultrathin nanosheet structure, large SSA, and reasonable hierarchical porous structure. This work not only provides a new strategy to fabricate the ultrathin CNS in large scale and low cost but also enlarges CNS materials potential applications in energy storage
    corecore