413 research outputs found

    The Study of Protein Conformation in Solution Via Direct Sampling by Desorption Electrospray Ionization Mass Spectrometry

    Get PDF
    The direct sampling feature of liquid sample desorption electrospray ionization (DESI) allows the ionization of liquid samples without adding acids/organic solvents (i.e., without sample pretreatment). As a result, it provides a new approach for probing protein conformation in solution. In this study, it has been observed that native protein ions are generated from proteins in water by DESI. Interestingly, the intensities of the resulting protein ions appear to be higher than those generated by ESI of the proteins in water or in ammonium acetate. For protein solutions that already contain acids/organic solvents, DESI can be used to investigate the influences of these denaturants on protein conformations and the obtained results are in good agreement with spectroscopic data. In addition, online monitoring of protein conformational changes by DESI is feasible; for instance, heat-induced unfolding of ubiquitin can be traced with DESI in water without influences of organic solvents/acids. This DESI method provides a new alternative tool for the study of protein conformation in solution

    Genetic Variation and Geographical Differentiation of \u3cem\u3eElymus nutans\u3c/em\u3e (Poaceae: Triticeae) from West China

    Get PDF
    Elymus nutans Griseb. is not only an important alpine forage grass, but also as a crucial gene pool for improving cereal crops. Understanding and maintaining the genetic diversity of the species are essential for both conservation strategy and breeding programs. However, little is known about its genetic and geographical differentiation patterns. E. nutans is a perennial, caespitose and allohexaploid (2n=6x=42) species that contains the St, H and Y genomes. It is native to temperate and tropical Asia, ranging from western and central Asia in the west to China and Mongolia in the east, from Russia in the north to India and the Himalayas areas in the south (Clayton et al. 2006). It is distributed in the north, northwest and southwest China, particularly in the Qinghai-Tibet Plateau. E. nutans is a valuable forage grass in the alpine regions that is resistant to cold, drought and pests, which can be used to improve cereal crops. In addition, it can play an important role in the restoration of disturbed grasslands and the establishment of artificial grasslands, especially at altitudes from 3,000 to 4,500 m (Chen and Jia 2000). During recent decades, its distribution has contracted because of over-exploitation, habitat destruction and fragmentation. Therefore, it is urgent to understand and monitor the genetic and geographical differentiation of wild germplams of E. nutans

    The Algorithm of AAES

    Get PDF
    The Advanced Encryption Standard (AES) was specified in 2001 by the National Institute of Standards and Technology. This paper expand the method and make it possible to realize a new AES-like algorithm that has 256 bits fixed block size, which is named AAES algorithm. And we use Verilog to simulate the arithmetic and use Lattice Diamond to simulate the hardware property and action. We get the conclusion that the algorithm can be easily used on indestury and it is more robustness and safety than AES. And they are on the same order of magnitude in hardware implementation

    Population-Based Evolutionary Gaming for Unsupervised Person Re-identification

    Full text link
    Unsupervised person re-identification has achieved great success through the self-improvement of individual neural networks. However, limited by the lack of diversity of discriminant information, a single network has difficulty learning sufficient discrimination ability by itself under unsupervised conditions. To address this limit, we develop a population-based evolutionary gaming (PEG) framework in which a population of diverse neural networks is trained concurrently through selection, reproduction, mutation, and population mutual learning iteratively. Specifically, the selection of networks to preserve is modeled as a cooperative game and solved by the best-response dynamics, then the reproduction and mutation are implemented by cloning and fluctuating hyper-parameters of networks to learn more diversity, and population mutual learning improves the discrimination of networks by knowledge distillation from each other within the population. In addition, we propose a cross-reference scatter (CRS) to approximately evaluate re-ID models without labeled samples and adopt it as the criterion of network selection in PEG. CRS measures a model's performance by indirectly estimating the accuracy of its predicted pseudo-labels according to the cohesion and separation of the feature space. Extensive experiments demonstrate that (1) CRS approximately measures the performance of models without labeled samples; (2) and PEG produces new state-of-the-art accuracy for person re-identification, indicating the great potential of population-based network cooperative training for unsupervised learning.Comment: Accepted in IJC

    Advances in electronic skin research: a bibliometric analysis

    Get PDF
    Background: E-skin (electronic skin) is an active research area in human-computer interaction and artificial intelligence.Methods: A bibliometric analysis was performed to evaluate publications in the E-skin field between 2000 and 2021 based on the Web of Science (WoS) databases.Results: A total of 4,954 documents were identified. A detailed overview of E-skin research was presented from aspects of productive countries/regions, institutions, journals, citations, highly cited papers, keywords, and emerging topics. With the emergence of new functional materials, structural design, 3D printing, and nanofabrication techniques, E-skin research has achieved dramatic progress after 2013. Scholars and institutions in China, the United States and South Korea are leading the way in E-skin research. Pressure sensor, strain sensor, and flexible electronics are the most focused directions at present and Internet of things is the most emerging topic.Conclusion: E-skin research has achieved dramatic progress but there is still quite a challenging task in practical applications. Manufacturing process simplification, cost reduction, functional integration, energy supply, and biocompatibility are vital for the future development of E-skin

    Drivers of population divergence and genetic variation in Elymus breviaristatus (Keng) Keng f. (Poaceae: Triticeae), an endemic perennial herb of the Qinghai-Tibet plateau

    Get PDF
    Elymus breviaristatus, a rare grass species with excellent resistance and ecological importance, is narrowly distributed on the Qinghai-Tibet plateau. Populations of E. breviaristatus are declining due to habitat fragmentation, and thus far, characteristics of genetic differentiation and adaptive responses to climate change remain poorly understood in this species. Here, we explored the genetic structure of 18 natural populations (269 individuals) in the transition zone between Tibet and the Hengduan Mountains using 15 expressed sequence tag (EST)-SSR primer pairs and identified possible barriers to gene flow that might have caused genetic discontinuities. Additional analyses were performed to identify the environmental factors affecting genetic diversity and to test whether the patterns of genetic variation among populations were more consistent with the isolation by distance (IBD) or isolation by environment (IBE) model. Multiple measures of genetic diversity revealed that intra-population genetic variation was low, while inter-population genetic variation was high. Clustering, structure, and principal coordinate analyses identified three genetic groups: (a) Eastern Qamdo, (b) Nagqu and Western Qamdo, and (c) Lhasa and Nyingchi. A clear physical barrier to gene flow was formed by the Yarlung Zangbo Grand Canyon and the Tanggula Mountains. We found that both IBD and IBE contributed to the observed patterns of genetic variation, and the IBE model played a leading role. In addition, precipitation-related variables, soil phosphorus content and soil K:P ratio significantly affected population genetic variation. Overall, our results emphasized the genetic fragility of E. breviaristatus populations and showed that this species requires attention, as future climate changes and human activities may further threaten its survival. In addition, the genetic differences among E. breviaristatus populations should be considered when formulating conservation measures for E. breviaristatus populations in the study area

    Regulated Expression of Human Histocompatibility Leukocyte Antigen (HLA)-DO During Antigen-dependent and Antigen-independent Phases of B Cell Development

    Get PDF
    Human histocompatibility leukocyte antigen (HLA)-DO, a lysosomal resident major histocompatibility complex class II molecule expressed in B cells, has previously been shown to be a negative regulator of HLA-DM peptide loading function. We analyze the expression of DO in human peripheral blood, lymph node, tonsil, and bone marrow to determine if DO expression is modulated in the physiological setting. B cells, but not monocytes or monocyte-derived dendritic cells, are observed to express this protein. Preclearing experiments demonstrate that ∼50% of HLA-DM is bound to DO in peripheral blood B cells. HLA-DM and HLA-DR expression is demonstrated early in B cell development, beginning at the pro-B stage in adult human bone marrow. In contrast, DO expression is initiated only after B cell development is complete. In all situations, there is a striking correlation between intracellular DO expression and cell surface class II–associated invariant chain peptide expression, which suggests that DO substantially inhibits DM function in primary human B cells. We report that the expression of DO is markedly downmodulated in human germinal center B cells. Modulation of DO expression may provide a mechanism to regulate peptide loading activity and antigen presentation by B cells during the development of humoral immune responses

    TERT promoter methylation is associated with high expression of TERT and poor prognosis in papillary thyroid cancer

    Get PDF
    The telomerase reverse transcriptase (TERT) is overexpressed and associated with poor prognosis in papillary thyroid cancer (PTC), the most common subtype of thyroid cancer. The overexpression of TERT in PTC was partially attributed to transcriptional activation by two hotspot mutations in the core promoter region of this gene. As one of the major epigenetic mechanisms of gene expression regulation, DNA methylation has been proved to regulate several tumor-related genes in PTC. However, the association of TERT promoter DNA methylation with TERT expression and PTC progression is still unclear. By treating PTC cell lines with demethylating agent decitabine, we found that the TERT promoter methylation and the genes’ expression were remarkably decreased. Consistently, PTC patients with TERT hypermethylation had significantly higher TERT expression than patients with TERT hypomethylation. Moreover, TERT hypermethylated patients showed significant higher rates of poor clinical outcomes than patients with TERT hypomethylation. Results from the cox regression analysis showed that the hazard ratios (HRs) of TERT hypermethylation for overall survival, disease-specific survival, disease-free interval (DFI) and progression-free interval (PFI) were 4.81 (95% CI, 1.61-14.41), 8.28 (95% CI, 2.14-32.13), 3.56 (95% CI, 1.24-10.17) and 3.32 (95% CI, 1.64-6.71), respectively. The HRs for DFI and PFI remained significant after adjustment for clinical risk factors. These data suggest that promoter DNA methylation upregulates TERT expression and associates with poor clinical outcomes of PTC, thus holds the potential to be a valuable prognostic marker for PTC risk stratification
    corecore