9 research outputs found

    Parallel coupled cavity structure with constant magnets focusing system

    No full text
    Accelerator for intensive electron beam (average current up to 2 A) from energy 50 keV up to energy 3-5 MeV is offered. Accelerating structure consist of a few resonators fed parallel from one waveguide. Focusing system contains constant radial magnets located between accelerating resonators and creating the axial alternating-gradient focusing magnetic field. Geometry and results of beam dynamics calculation such kind accelerator are presented

    Buncher of electron linac-injector for a synchrotron

    No full text
    The application of RF buncher-accelerators for obtaining the short electron bunches is rather known. Their design varies. Linear accelerators with high-current pulsed beams at energy more than 30 MeV are mainly used as injectors into synchrotrons at modern accelerating complexes. The beam should be previously prepared as series of bunches for injection to obtain stable and effective accelerating regime. In this case RF electron sources would be appropriate for use at the input of a linear accelerator. Such preparing the beam allows one to achieve an effective beam capture into the accelerating regime of linear accelerator for each of the bunches, as well as synchronized operation of the complex with decreased level of radiation background

    The prototype of radioactive ion source

    No full text
    The design and experimental results of the RIB source prototype are presented. A source will have the container of ²³⁵U compounds heated up to 2200-2500°C. Vapors of uranium fission obtained when the ion source is irradiated by the high-energy neutron flux, are then ionized and extracted from the source. In the experiments with the prototype loaded by ¹²C the source working temperature 2700°C was reached, the carbon ion current 10 nA was obtained. The total operation time of more than 100 hours with no performance degradation was demonstrated

    Project of deuteron accelerator based neutron source for rib production

    No full text
    The project of a high-intense neutron source for the SPES project in LNL, Legnaro, Italy [1] is developed. The source is based on the rotating carbon target. The target is bombarded by the deuteron beam with energy 20 MeV, diameter 1 cm, average power 100 kW. The target is cooled by its thermal radiation, and its temperature can reach 1800ºC. It is shown that high density graphite can be used as a material for neutron production. The source can produce up to 10¹⁴ neutrons per second with energy within few MeV - few dozens MeV range, its lifetime is around few thousand hours

    Project of a fast neutron target based on a 10 MeV 300 kW proton accelerator

    No full text
    Project of targets for high intense neutron source is proposed. The source is based on a proton continuous accelerator with the 10 MeV particle energy and up to 300 kW mean beam power. Problems of fabrication of these targets are discussed. Hot solid state and liquid target designs are considered. Maximum admissible target parameters are presented. Advantages and disadvantages of various types of target for neutron production are discussed

    Status of NSLS-II booster

    No full text
    The National Synchrotron Light Source II is a third generation light source under construction at Brookhaven National Laboratory. The project includes a highly optimized 3 GeV electron storage ring, linac pre-injector and full-energy booster-synchrotron. Budker Institute of Nuclear Physics builds booster for NSLS-II. The booster should accelerate the electron beam continuously and reliably from minimal 170 MeV injection energy to maximal energy of 3.15 GeV and average beam current of 20 mA. The booster shall be capable of multi-bunch and single bunch operation. This paper summarizes the status of NSLS-II booster.Национальный источник синхротронного излучения II является синхротроном третьего поколения, созданным в Брукхевенской национальной лаборатории. Проект включает: высокооптимизированное накопительное кольцо на 3 ГэВ, линейный ускоритель и бустерный синхротрон на полную энергию. Институт ядерной физики им. Г.И. Будкера создает бустер для NSLS-II. Бустер должен надежно и непрерывно ускорять пучок электронов от минимальной энергии инжекции 170 МэВ до максимальной энергии 3,15 ГэВ с током пучка 20 мА. Бустер должен быть способен работать в односгустковом и многосгустковом режимах. Эта статья суммирует состояние дел по бустеру для NSLS-II.Національне джерело синхротронного випромінювання II є синхротроном третього покоління, створеним у Брукхевенській національній лабораторії. Проект включає: високооптимізоване накопичувальне кільце на 3 ГеВ, лінійний прискорювач і бустерний синхротрон на повну енергію. Інститут ядерної фізики ім. Г.І. Будкера створює бустер для NSLS-II. Бустер повинен надійно і безперервно прискорювати пучок електронів від мінімальної енергії інжекції 170 МеВ до максимальної енергії 3,15 ГеВ зі струмом пучка 20 мА. Бустер повинен бути здатний працювати в односгустковому і багатосгустковому режимах. Ця стаття підсумовує стан справ по бустеру для NSLS-II

    Setting up and time-resolution measurement of a radio-frequency-based streak camera

    No full text
    We have experimented with a radio-frequency-based streak camera. The basic idea behind the method consists of magnetic deflection of the electron beam imparted by a radio-frequency cavity. All the components of the camera were tested and the time resolution was measured to lie within the sub-ps domain. Further advantages of the method are simplification of triggering, weaker dependence on space-charge effect within the electron beam, high modularity, and ease of implementation

    Performace of a radio-frequency-based strak camera

    No full text
    We have experimented with a streak camera based on radio-frequency detection of the electron beam. The time-resolution was measured to lie in the sub-ps domain. The method allowed considerable simplification of triggering, weaker dependence on space-charge within the electron beam, high modularity, and ease of implementation. We discuss experimental results and future prospects
    corecore