41 research outputs found

    An Intelligent Fault Alert Mechanism for Dynamic IoT Communication Microarchitecture

    Get PDF
    The usage Internet of Things (IoT) was maximized throughout the entire world. Hence, the different core processors incorporated microarchitecture makes this IoT communication system. However, the rise of faults due to the malicious event and the data overload might maximize energy and power utilization. So, the current study has proposed a novel Chimp-based Domain adaptation Alert System (CbDAAS) for the dynamic IoT communication microarchitecture. Before initiating the communication sharing process, the present fault in the designed IoT dynamic core microarchitecture was predicted, and those cores were removed for the current data broadcasting process. Henceforth, the designed fault alert microarchitecture is tested in the MATLAB platform. The reliability was valued using different metrics like power usage, energy consumption and detection exactness value. Finally, the validated metrics were compared with the associated studies and scored the finest outcome in fault detection score as 98% and less energy usage at 0.025mj

    A Closer Look at Two AdS4AdS_4 Branes in an AdS5AdS_5 Bulk

    Full text link
    We investigate a scenario with two AdS4AdS_4 branes in an AdS5AdS_5 bulk. In this scenario there are two gravitons and we investigate the role played by each of them for different positions of the second brane. We show that both gravitons play a significant role only when the turn-around point in the warp factor is approximately equidistant from both branes. We find that the ultralight mode becomes heavy as the second brane approaches the turn-around point, and the physics begins to resemble that of the RS model. Thus we demonstrate the crucial role played by the turn-around in the warp factor in enabling the presence of both gravitons.Comment: 21 pages, late

    Discretizing Gravity in Warped Spacetime

    Full text link
    We investigate the discretized version of the compact Randall-Sundrum model. By studying the mass eigenstates of the lattice theory, we demonstrate that for warped space, unlike for flat space, the strong coupling scale does not depend on the IR scale and lattice size. However, strong coupling does prevent us from taking the continuum limit of the lattice theory. Nonetheless, the lattice theory works in the manifestly holographic regime and successfully reproduces the most significant features of the warped theory. It is even in some respects better than the KK theory, which must be carefully regulated to obtain the correct physical results. Because it is easier to construct lattice theories than to find exact solutions to GR, we expect lattice gravity to be a useful tool for exploring field theory in curved space.Comment: 17 pages, 4 figures; references adde

    Marine Enzymes Production Tools to the Pharmaceutical Industry

    Get PDF
    1656-1666Marine environment contains organisms that make it a profitable natural reservoir, having a tremendous potential to produce functional bio-catalysis, such as amylase, lipase, protease, curtains etc. The enzymes isolated from marine organisms, especially extremophiles, are distinguished by their habitat-related features through bioprospecting processes. These novel features include barophilicity, cold adaptively, salt tolerance and hyperthermo-stability which can alter industrial processes to facilitate mass transfer, energy savings, cost reduction, etc. . This review gives details about the marine enzymes and their, historical discovery followed by isolation processes, introducing seven special marine enzymes with emphasis on their potential applications in chemical, food and pharmaceutical industry

    Improved Removal of Blood Contamination From ThinPrep Cervical Cytology Camples for Raman Spectroscopic Analysis

    Get PDF
    There is an unmet need for methods to help in the early detection of cervical precancer. Optical spectroscopy-based techniques, such as Raman spectroscopy, have shown great potential for diagnosis of different cancers, including cervical cancer. However, relatively few studies have been carried out on liquid-based cytology (LBC) pap test specimens and confounding factors, such as blood contamination, have been identified. Previous work reported a method to remove blood contamination before Raman spectroscopy by pretreatment of the slides with hydrogen peroxide. The aim of the present study was to extend this work to excessively bloody samples to see if these could be rendered suitable for Raman spectroscopy. LBC ThinPrep specimens were treated by adding hydrogen peroxide directly to the vial before slide preparation. Good quality Raman spectra were recorded from negative and high grade (HG) cytology samples with no blood contamination and with heavy blood contamination. Good classification between negative and HG cytology could be achieved for samples with no blood contamination (sensitivity 92%, specificity 93%) and heavy blood contamination (sensitivity 89%, specificity 88%) with poorer classification when samples were combined (sensitivity 82%, specificity 87%). This study demonstrates for the first time the improved potential of Raman spectroscopy for analysis of ThinPrep specimens regardless of blood contamination

    Comparability of Raman Spectroscopic Configurations: A LargeScale Cross-Laboratory Study

    Get PDF
    The variable configuration of Raman spectroscopic platforms is one ofthe major obstacles in establishing Raman spectroscopy as a valuable physicochemicalmethod within real-world scenarios such as clinical diagnostics. For such real worldapplications like diagnostic classification, the models should ideally be usable to predictdata from different setups. Whether it is done by training a rugged model with data frommany setups or by a primary-replica strategy where models are developed on a‘primary’setup and the test data are generated on‘replicate’setups, this is only possible if the Raman spectra from different setups are consistent, reproducible, and comparable.However, Raman spectra can be highly sensitive to the measurement conditions, and they change from setup to setup even if thesame samples are measured. Although increasingly recognized as an issue, the dependence of the Raman spectra on the instrumentalconfiguration is far from being fully understood and great effort is needed to address the resulting spectral variations and to correctfor them. To make the severity of the situation clear, we present a round robin experiment investigating the comparability of 35Raman spectroscopic devices with different configurations in 15 institutes within seven European countries from the COST(European Cooperation in Science and Technology) action Raman4clinics. The experiment was developed in a fashion that allowsvarious instrumental configurations ranging from highly confocal setups tofibre-optic based systems with different excitationwavelengths. We illustrate the spectral variations caused by the instrumental configurations from the perspectives of peak shifts,intensity variations, peak widths, and noise levels. We conclude this contribution with recommendations that may help to improvethe inter-laboratory studie

    Raman Spectroscopic Detection of High-Grade Cervical Cytology: Using Morphologically Normal Appearing Cells

    Get PDF
    This study aims to detect high grade squamous intraepithelial cells (HSIL) by investigating HSIL associated biochemical changes in morphologically normal appearing intermediate and superficial cells using Raman spectroscopy. Raman spectra (n = 755) were measured from intermediate and superficial cells from negative cytology ThinPrep specimens (n = 18) and from morphologically normal appearing intermediate and superficial cells from HSIL cytology ThinPrep specimens (n = 17). The Raman data was subjected to multivariate algorithms including the standard principal component analysis (PCA)-linear discriminant analysis (LDA) and partial least squares discriminant analysis (PLS-DA) together with random subsets cross-validation for discriminating negative cytology from HSIL. The PCA-LDA method yielded sensitivities of 74.9%, 72.8%, and 75.6% and specificities of 89.9%, 81.9%, and 84.5%, for HSIL diagnosis based on the dataset obtained from intermediate, superficial and mixed intermediate/superficial cells, respectively. The PLS-DA method provided improved sensitivities of 95.5%, 95.2% and 96.1% and specificities of 92.7%, 94.7% and 93.5% compared to the PCA-LDA method. The results demonstrate that the biochemical signatures of morphologically normal appearing cells can be used to discriminate between negative and HSIL cytology. In addition, it was found that mixed intermediate and superficial cells could be used for HSIL diagnosis as the biochemical differences between negative and HSIL cytology were greater than the biochemical differences between intermediate and superficial cell types

    Correlators of supersymmetric Wilson-loops, protected operators and matrix models in N=4 SYM

    Get PDF
    We study the correlators of a recently discovered family of BPS Wilson loops in N=4{\cal N}=4 supersymmetric U(N) Yang-Mills theory. When the contours lie on a two-sphere in the space-time, we propose a closed expression that is valid for all values of the coupling constant gg and for any rank NN, by exploiting the suspected relation with two-dimensional gauge theories. We check this formula perturbatively at order O(g4){\cal O}(g^4) for two latitude Wilson loops and we show that, in the limit where one of the loops shrinks to a point, logarithmic corrections in the shrinking radius are absent at O(g6){\cal O}(g^6). This last result strongly supports the validity of our general expression and suggests the existence of a peculiar protected local operator arising in the OPE of the Wilson loop. At strong coupling we compare our result to the string dual of the N=4{\cal N}=4 SYM correlator in the limit of large separation, presenting some preliminary evidence for the agreement.Comment: 20 page, 8 figure
    corecore