59 research outputs found

    A Fluorescent Sensor for Zinc Detection and Removal Based on Core-Shell Functionalized Fe 3

    Get PDF
    The magnetic Fe3O4@SiO2 nanoparticles (NPs) functionalized with 8-chloroacetylaminoquinoline as a fluorescent sensor for detection and removal of Zn2+ have been synthesized. The core-shell structures of the nanoparticles and chemical composition have been confirmed by TEM, XRD, FTIR, and XPS techniques. The addition of functionalized Fe3O4@SiO2 NPs into the acetonitrile solution of Zn2+ had an effect of visual color change as well as significant fluorescent enhancement. High-saturated magnetizations (24.7 emu/g) of functionalized Fe3O4@SiO2 NPs could help to separate the metal ions from the aqueous solution. The magnetic sensor exhibited high removal efficiency towards Zn2+ (92.37%). In this work, we provided an easy and efficient route to detect Zn2+ and simultaneously remove Zn2+

    Responses of soil C, N, and P stoichiometric ratios to N and S additions in a subtropical evergreen broad-leaved forest

    Get PDF
    Acid deposition from the emission of nitrogen (N) and sulfur (S) has become an important factor affecting the soil nutrient balance and biogeochemical cycling in terrestrial ecosystems. The average levels of N and S deposition in the rainy area of southwestern China from 2008 to 2010 were 9.5 g N m¯² y¯¹ and 19.3 g S m¯² y¯¹, respectively. External additions of N and S fertilizers combined with high levels of acid deposition may affect the soil ecological stoichiometry in the region's widely distributed subtropical evergreen broad-leaved forest. Therefore, we investigated the responses of the soil stoichiometric ratios and enzyme activities to added N (+N), added S (+S), added N and S (+NS), and a control (Ctr) in the 0-20 cm layer in an evergreen broad-leaved forest in the rainy area of southwestern China from April 2013 to April 2015. The results showed that the soil total N (TN) concentration and N/P ratio were higher and the soil organic C (SOC) concentration and C/N ratio were lower in the fertilization treatments than the Ctr, although N and S additions did not significantly alter the soil total P (TP) concentration. The +N, +S, and +NS treatments increased the soil acid phosphatase activity and reduced the soil invertase, cellulase, catalase, and polyphenol oxidase activities. The +N and +NS treatments increased the soil urease activity and reduced soil peroxidase activity. The +S treatment reduced the soil urease activity and did not alter soil peroxidase activity. N and S additions had synergistic decreasing effects on the SOC concentration, C/N ratio, and soil cellulose and catalase activities. Moreover, structural equation models identified that N and S additions regulated the SOC, TN, and TP concentrations via shifting the activities of soil enzymes and the pathways differed between N addition and S addition. In conclusion, N and S additions decreased the SOC concentration, C/N ratio, and most soil C-cycle enzyme activities and increased the TN concentration, N/P ratio, and soil acid phosphatase activity. All these results indicated that external N and S additions combined with acid deposition increased soil N concentrations and exacerbated soil C and P limitations in this forest

    The additions of Nitrogen and Sulfur synergistically decrease the release of Carbon and Nitrogen from litter in a subtropical forest

    Get PDF
    Atmospheric nitrogen (N) and sulfur (S) deposition in subtropical forests has increased rapidly and the current level is very high, thus seriously affecting nutrient (e.g., N and phosphorus (P)) release from litter. However, the specific effects of S addition and its interaction with N on the release of carbon (C), N, and P from litter in subtropical evergreen broadleaved forests are unclear. Therefore, a two-year field experiment was performed using a litterbag method in a subtropical evergreen broadleaved forest in western China to examine the responses of litter decomposition and nutrient release to the control (CK), added N (+N), added S (+S), and added N and S (+NS) treatments. The results showed that the remaining litter mass, lignin, cellulose, C, N, P, and litter N/P ratio were higher, whereas the litter C/N ratio and soil pH were lower in the fertilization treatments than in CK. The annual decomposition coefficients (k-values) in the +N, +S, and +NS treatments were 0.384 ± 0.002, 0.378 ± 0.002, and 0.374 ± 0.001 year−1, respectively, which were significantly lower than the k-values in CK (0.452 ± 0.005 year−1, p < 0.05). The remaining mass, lignin, cellulose, C, and litter N/P ratio were higher, whereas the soil pH was lower in the +NS treatment than in the +N and +S. The interactive effects of N addition and S addition on the remaining litter lignin, cellulose, C, N, and P; the litter C/N, C/P, and N/P ratios; and the soil pH were significant (p < 0.05). In conclusion, the addition of N and S synergistically decreased the degradation of lignin and cellulose and the release of C and N and increased the litter N/P ratio, suggesting that external N and S inputs synergistically slowed the release of C and N from litter and exacerbated litter P limitation during decomposition in this forest

    Development and evaluation of a new luciferase immunosorbent assay to detect GII.6 norovirus-specific IgG in different domestic and wild animals

    Get PDF
    Noroviruses (NoVs) are the leading viral pathogens globally causing acute gastroenteritis (AGE) in humans, posing a significant global health threat and economic burden. Recent investigations revealed that human NoVs had been detected in different animals, which raises concerns about whether NoVs are potential zoonotic diseases. This study developed a novel luciferase immunosorbent assay (LISA) to detect GII.6 NoV IgG based on P protein of VP1. The LISA showed high specificity (99.20%) and sensitivity (92.00%) with 4–16 times more sensitivity compared with an ELISA. NoV-LISA was reproducible with human serum regarding the inter- and intra-assay coefficient of variance values. Potential cross-reactivity was also evaluated using mice serum immunized by other antigens, which showed that NoV-LISA could differentiate GII.6 NoV from rotavirus and various genotypes of NoV. Specific GII.6 NoV IgG was widely detected in different domestic and wild animals, including dogs, pigs, bats, rats, and home shrews, with various IgG-positive rates ranging from 2.5 to 74.4%. In conclusion, our newly developed NoV-LISA assay is suitable for NoV-specific IgG detection in humans and animals. The wide distribution of IgG antibodies against human NoV indicates potential zoonotic transmission between humans and animals

    Preparation and Characterization of Stimuli-Responsive Magnetic Nanoparticles

    Get PDF
    In this work, the main attention was focused on the synthesis of stimuli-responsive magnetic nanoparticles (SR-MNPs) and the influence of glutathione concentration on its cleavage efficiency. Magnetic nanoparticles (MNPs) were first modified with activated pyridyldithio. Then, MNPs modified with activated pyridyldithio (MNPs-PDT) were conjugated with 2, 4-diamino-6-mercaptopyrimidine (DMP) to form SR-MNPs via stimuli-responsive disulfide linkage. Fourier transform infrared spectra (FTIR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were used to characterize MNPs-PDT. The disulfide linkage can be cleaved by reduced glutathione (GHS). The concentration of glutathione plays an important role in controlling the cleaved efficiency. The optimum concentration of GHS to release DMP is in the millimolar range. These results had provided an important insight into the design of new MNPs for biomedicine applications, such as drug delivery and bio-separation

    Chemical profile and phytotoxic action of Onopordum acanthium essential oil

    No full text
    Abstract The potential of utilizing Onopordum acanthium essential oil and its major constituents as environment friendly herbicides was investigated. In total 29, 25, and 18 compounds were identified from flower, leaf, and stem oils, representing 94.77%, 80.02%, and 90.74% of the total oil, respectively. Flower and stem oils were found to be rich in n-alkanes, which accounted for 57.33% in flower oil, and 82.33% in stem oil. Flower oil exerted potent inhibitory activity on both receiver species, Amaranthus retroflexus and Poa annua, which nearly completely suppressed seed germination at 5 mg/mL, and β-eudesmol is the most likely responsible compound for its phytotoxicity; in comparison, leaf and stem oils exhibited much weaker inhibitory activity on A. retroflexus, and stimulatory effect on P. annua when tested concentration was below 2.5 mg/mL. Alkanes in the oils were found to exert relatively weak plant growth regulatory activity. This report is the first on the chemical profile and phytotoxic action of O. acanthium oil as well as the phytotoxicity of β-eudesmol

    Simulated nitrogen deposition significantly reduces soil respiration in an evergreen broadleaf forest in western China.

    No full text
    Soil respiration is the second largest terrestrial carbon (C) flux; the responses of soil respiration to nitrogen (N) deposition have far-reaching influences on the global C cycle. N deposition has been documented to significantly affect soil respiration, but the results are conflicting. The response of soil respiration to N deposition gradients remains unclear, especially in ecosystems receiving increasing ambient N depositions. A field experiment was conducted in a natural evergreen broadleaf forest in western China from November 2013 to November 2015 to understand the effects of increasing N deposition on soil respiration. Four levels of N deposition were investigated: control (Ctr, without N added), low N (L, 50 kg N ha-1·a-1), medium N (M, 150 kg N ha-1·a-1), and high N (H, 300 kg N ha-1·a-1). The results show that (1) the mean soil respiration rates in the L, M, and H treatments were 9.13%, 15.8% (P < 0.05) and 22.57% (P < 0.05) lower than that in the Ctr treatment (1.56 ± 0.13 μmol·m-2·s-1), respectively; (2) soil respiration rates showed significant positive exponential and linear relationships with soil temperature and moisture (P < 0.01), respectively. Soil temperature is more important than soil moisture in controlling the soil respiration rate; (3) the Ctr, L, M, and H treatments yielded Q10 values of 2.98, 2.78, 2.65, and 2.63, respectively. N deposition decreased the temperature sensitivity of soil respiration; (4) simulated N deposition also significantly decreased the microbial biomass C and N, fine root biomass, pH and extractable dissolved organic C (P < 0.05). Overall, the results suggest that soil respiration declines in response to N deposition. The decrease in soil respiration caused by simulated N deposition may occur through decreasing the microbial biomass C and N, fine root biomass, pH and extractable dissolved organic C. Ongoing N deposition may have significant impacts on C cycles and increase C sequestration with the increase in global temperature in evergreen broadleaf forests

    Improving the Accuracy of Landslide Detection in “Off-site” Area by Machine Learning Model Portability Comparison: A Case Study of Jiuzhaigou Earthquake, China

    No full text
    The rising machine learning (ML) models have become the preferred way for landslide detection based on remote sensing images, but the performance of these models in a sample-free area are rarely concerned in many studies. In this study, we used a cross-validation method (training model in one area and validation in another) to compare the model portability of trained ML models applied in an &ldquo;off-site&rdquo; area, as a consideration of the landslide detection ability of these models in sample-free areas. We integrate nighttime light imagery, multi-seasonal optical Landsat time-series and digital elevation data, and we employed support vector machines (SVM), artificial neural networks (ANN) and random forest (RF) models to classify the satellite imagery and identify landslides. Samples of two scenarios generated from two subareas of the Jiuzhaigou disaster-stricken region are used for the cross-application and accuracy evaluation of three ML models. The results revealed that when the trained models are applied in areas outside those in which they were developed, the landslide identification accuracy of these three models has declined. Especially for the SVM and ANN models, the accuracy is greatly reduced and there appears a seriously imbalanced user&rsquo;s and producer&rsquo;s accuracy. However, although the performance of the RF model is lower than that of SVM and ANN models in their local area, the RF model exhibits stable portability, and retains the original performance and achieves a satisfactory balance between overestimation and underestimation in &ldquo;off-site&rdquo; areas. An additional validation from a new area proved that the landslide detection performance of the RF model with stable portability is higher than that of the SVM and ANN models in &ldquo;off-site&rdquo; areas. The results suggest that evaluating the model portability through cross-application can be a useful way to determine the most suitable model for landslide detection in &ldquo;off-site&rdquo; areas with a similar geographic environment to model development areas, so as to maximize the accuracy of landslide detection based on limited samples

    Preparation of 2-Aminothiazole-Functionalized Poly(glycidyl methacrylate) Microspheres and Their Excellent Gold Ion Adsorption Properties

    No full text
    A new adsorbent(A-PGMA) has been synthesized via functionalizing poly(glycidyl methacrylate) microsphere with 2-aminothiazole and used to adsorb gold ions from aqueous solutions. The adsorbent was characterized by X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), Zeta potential, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR). The influence factors such as the pH value of the solution, the initial gold ion concentration and the contact time were examined. Simultaneously, the adsorption process of the gold ion on A-PGMA fitted well with the Langmuir and pseudo-second-order models, respectively. The results showed that the maximum adsorption capacity was 440.54 mg/g and the equilibrium time of adsorption was about 3 h under pH 4. Moreover, the adsorbent has a high reusability after five cycles and good selectivity from coexisting ions, including Zn(II), Mg(II), Cu(II), Ge(IV) and B(III). The adsorption mechanisms of gold ions were ion exchange and chelation between the sulfur and nitrogen groups on the surface of A-PGMA and AuCl4−. Therefore, the adsorbent has a great potential for adsorption of gold ions from aqueous solutions
    corecore