10 research outputs found
Investigation of flow regime in debris bed formation behavior with nonspherical particles
It is important to clarify the characteristics of flow regimes underlying the debris bed formation behavior that might be encountered in core disruptive accidents of sodium-cooled fast reactors. Although in our previous publications, by applying dimensional analysis technique, an empirical model, with its reasonability confirmed over a variety of parametric conditions, has been successfully developed to predict the regime transition and final bed geometry formed, so far this model is restricted to predictions of debris mixtures composed of spherical particles. Focusing on this aspect, in this study a new series of experiments using nonspherical particles have been conducted. Based on the knowledge and data obtained, an extension scheme is suggested with the purpose of extending the base model to cover the particle-shape influence. Through detailed analyses and given our current range of experimental conditions, it is found that, by coupling the base model with this scheme, respectable agreement between experiments and model predictions for the regime transition can be achieved for both spherical and nonspherical particles. Knowledge and evidence from our work might be utilized for the future improvement of design of an in-vessel core catcher as well as the development and verification of sodium-cooled fast reactor severe accident analysis codes in China
The Effect of 6-Week Combined Balance and Plyometric Training on Dynamic Balance and Quickness Performance of Elite Badminton Players
The study aimed to investigate the effect of combined balance and plyometric training on dynamic balance and quickness performance of elite badminton athletes. Sixteen elite male badminton players volunteered to participate and were randomly assigned to a balance-plyometric group (PB: n = 8) and plyometric group (PT: n = 8). The PB group performed balance combined with plyometric training three times a week over 6 weeks (40 min of plyometrics and 20 min of balance training); while the PT group undertook only plyometric training for the same period (3–4 sets × 8–12 reps for each exercise). Both groups were given the same technical training (badminton techniques for 6 days a week). The dynamic stability and quick movement ability were assessed at baseline and after the intervention by measuring the performance of dynamic posture stability test (DPSI and COP), T-running test and hexagon jump test. The results showed that compared to PT, PB induced significantly greater improvements in F-DPSI, L-DPSI (p = 0.003, 0.025, respectively), F-COPAP, F-COPML, F-COPPL, L-COPPL (p = 0.024, 0.002, 0.029, 0.043, respectively), T-running test and hexagon jump test (p < 0.001). The change in L-DPSI, L-COPAP, L-COPML did not differ between PB and PT (p > 0.907). The findings suggest that combined training holds great promise of improving the dynamic balance and quickness performance in elite badminton athletes
Parishin treatment alleviates cardiac aging in naturally aged mice
Background: Cardiac aging progressively decreases physiological function and drives chronic/degenerative aging-related heart diseases. Therefore, it is crucial to postpone the aging process of heart and create products that combat aging. Aims & methods: The objective of this study is to examine the effects of parishin, a phenolic glucoside isolated from traditional Chinese medicine Gastrodia elata, on anti-aging and its underlying mechanism. To assess the senescent biomarkers, cardiac function, cardiac weight/body weight ratio, cardiac transcriptomic changes, and cardiac histopathological features, heart tissue samples were obtained from young mice (12 weeks), aged mice (19 months) treated with parishin, and aged mice that were not treated. Results: Parishin treatment improved cardiac function, ameliorated aging-induced cardiac injury, hypertrophy, and fibrosis, decreased cardiac senescence biomarkers p16Ink4a, p21Cip1, and IL-6, and increased the “longevity factor” SIRT1 expression in heart tissue. Furthermore, the transcriptomic analysis demonstrated that parishin treatment alleviated the cardiac aging-related Gja1 downregulation and Cyp2e1, Ccna2, Cdca3, and Fgf12 upregulation in the heart tissues. The correlation analysis suggested a strong connection between the anti-aging effect of parishin and its regulation of gut microbiota and metabolism in the aged intestine. Conclusion: The present study demonstrates the protective role and underlying mechanism of parishin against cardiac aging in naturally aged mice
Identification of N-(quinolin-8-yl)benzenesulfonamides as agents capable of down-regulating NFκB activity within two separate high-throughput screens of NFκB activation
We describe here a series of
N-(quinolin-8-yl)benzenesulfonamides capable of suppressing the NFκB pathway identified from two high-throughput screens run at two centers of the NIH Molecular Libraries Initiative. These small molecules were confirmed in both primary and secondary assays of NFκB activation and expanded upon through analogue synthesis. The series exhibited potencies in the cell-based assays at as low as 0.6
μM, and several indications suggest that the targeted activity lies within a common region of the NFκB pathway
PCSK9 genetic variants and risk of vascular and non-vascular diseases in Chinese and UK populations
Aims
Lowering low-density lipoprotein cholesterol (LDL-C) through PCSK9 inhibition represents a new therapeutic approach to preventing and treating cardiovascular disease (CVD). Phenome-wide analyses of PCSK9 genetic variants in large biobanks can help to identify unexpected effects of PCSK9 inhibition.
Methods and results
In the prospective China Kadoorie Biobank, we constructed a genetic score using three variants at the PCSK9 locus associated with directly measured LDL-C [PCSK9 genetic score (PCSK9-GS)]. Logistic regression gave estimated odds ratios (ORs) for PCSK9-GS associations with CVD and non-CVD outcomes, scaled to 1 SD lower LDL-C. PCSK9-GS was associated with lower risks of carotid plaque [n = 8340 cases; OR = 0.61 (95% confidence interval: 0.45–0.83); P = 0.0015], major occlusive vascular events [n = 15 752; 0.80 (0.67–0.95); P = 0.011], and ischaemic stroke [n = 11 467; 0.80 (0.66–0.98); P = 0.029]. However, PCSK9-GS was also associated with higher risk of hospitalization with chronic obstructive pulmonary disease [COPD: n = 6836; 1.38 (1.08–1.76); P = 0.0089] and with even higher risk of fatal exacerbations amongst individuals with pre-existing COPD [n = 730; 3.61 (1.71–7.60); P = 7.3 × 10−4]. We also replicated associations for a PCSK9 variant, reported in UK Biobank, with increased risks of acute upper respiratory tract infection (URTI) [pooled OR after meta-analysis of 1.87 (1.38–2.54); P = 5.4 × 10−5] and self-reported asthma [pooled OR of 1.17 (1.04–1.30); P = 0.0071]. There was no association of a polygenic LDL-C score with COPD hospitalization, COPD exacerbation, or URTI.
Conclusion
The LDL-C-lowering PCSK9 genetic variants are associated with lower risk of subclinical and clinical atherosclerotic vascular disease but higher risks of respiratory diseases. Pharmacovigilance studies may be required to monitor patients treated with therapeutic PCSK9 inhibitors for exacerbations of respiratory diseases or respiratory tract infections