220 research outputs found

    Adaptive Electricity Scheduling in Microgrids

    Full text link
    Microgrid (MG) is a promising component for future smart grid (SG) deployment. The balance of supply and demand of electric energy is one of the most important requirements of MG management. In this paper, we present a novel framework for smart energy management based on the concept of quality-of-service in electricity (QoSE). Specifically, the resident electricity demand is classified into basic usage and quality usage. The basic usage is always guaranteed by the MG, while the quality usage is controlled based on the MG state. The microgrid control center (MGCC) aims to minimize the MG operation cost and maintain the outage probability of quality usage, i.e., QoSE, below a target value, by scheduling electricity among renewable energy resources, energy storage systems, and macrogrid. The problem is formulated as a constrained stochastic programming problem. The Lyapunov optimization technique is then applied to derive an adaptive electricity scheduling algorithm by introducing the QoSE virtual queues and energy storage virtual queues. The proposed algorithm is an online algorithm since it does not require any statistics and future knowledge of the electricity supply, demand and price processes. We derive several "hard" performance bounds for the proposed algorithm, and evaluate its performance with trace-driven simulations. The simulation results demonstrate the efficacy of the proposed electricity scheduling algorithm.Comment: 12 pages, extended technical repor

    Codebook Based Hybrid Precoding for Millimeter Wave Multiuser Systems

    Get PDF
    In millimeter wave (mmWave) systems, antenna architecture limitations make it difficult to apply conventional fully digital precoding techniques but call for low cost analog radio-frequency (RF) and digital baseband hybrid precoding methods. This paper investigates joint RF-baseband hybrid precoding for the downlink of multiuser multi-antenna mmWave systems with a limited number of RF chains. Two performance measures, maximizing the spectral efficiency and the energy efficiency of the system, are considered. We propose a codebook based RF precoding design and obtain the channel state information via a beam sweep procedure. Via the codebook based design, the original system is transformed into a virtual multiuser downlink system with the RF chain constraint. Consequently, we are able to simplify the complicated hybrid precoding optimization problems to joint codeword selection and precoder design (JWSPD) problems. Then, we propose efficient methods to address the JWSPD problems and jointly optimize the RF and baseband precoders under the two performance measures. Finally, extensive numerical results are provided to validate the effectiveness of the proposed hybrid precoders.Comment: 35 pages, 9 figures, to appear in Trans. on Signal Process, 201

    Enzyme catalytic resonance scattering spectral detection of trace hydrogen peroxide using guaiacol as substrate

    Get PDF
    Hydrogen peroxide oxidized guaiacol to form tetramer particles that exhibited a strong resonance scattering (RS) peak at 530 nm in the presence of horseradish peroxidase (HRP) in citric acid-Na2HPO4 buffer solution of pH 4.4. The RS peak increased when the concentration of hydrogen peroxide increased. The increased RS intensity (ΔI530 nm) was linear to the hydrogen peroxide concentration in the range of 0.55-27.6 μM, with a linear regression equation of ΔI530 nm = 17.1C + 1.6, a relative coefficient of 0.9996 and a detection limit of 0.03 μM H2O2. This proposed method was applied to detect hydrogen peroxide in rain water, with sensitivity, selectivity, rapidity, and recovery of 98.0-104 %.KEY WORDS: HRP, H2O2, Guaiacol, Resonance scattering spectral method Bull. Chem. Soc. Ethiop. 2011, 25(2), 161-168. 

    Forgedit: Text Guided Image Editing via Learning and Forgetting

    Full text link
    Text guided image editing on real images given only the image and the target text prompt as inputs, is a very general and challenging problem, which requires the editing model to reason by itself which part of the image should be edited, to preserve the characteristics of original image, and also to perform complicated non-rigid editing. Previous fine-tuning based solutions are time-consuming and vulnerable to overfitting, limiting their editing capabilities. To tackle these issues, we design a novel text guided image editing method, Forgedit. First, we propose a novel fine-tuning framework which learns to reconstruct the given image in less than one minute by vision language joint learning. Then we introduce vector subtraction and vector projection to explore the proper text embedding for editing. We also find a general property of UNet structures in Diffusion Models and inspired by such a finding, we design forgetting strategies to diminish the fatal overfitting issues and significantly boost the editing abilities of Diffusion Models. Our method, Forgedit, implemented with Stable Diffusion, achieves new state-of-the-art results on the challenging text guided image editing benchmark TEdBench, surpassing the previous SOTA method Imagic with Imagen, in terms of both CLIP score and LPIPS score. Codes are available at https://github.com/witcherofresearch/Forgedit.Comment: Codes are available at https://github.com/witcherofresearch/Forgedi

    An NLoS-based Enhanced Sensing Method for MmWave Communication System

    Full text link
    The millimeter-wave (mmWave)-based Wi-Fi sensing technology has recently attracted extensive attention since it provides a possibility to realize higher sensing accuracy. However, current works mainly concentrate on sensing scenarios where the line-of-sight (LoS) path exists, which significantly limits their applications. To address the problem, we propose an enhanced mmWave sensing algorithm in the 3D non-line-of-sight environment (mm3NLoS), aiming to sense the direction and distance of the target when the LoS path is weak or blocked. Specifically, we first adopt the directional beam to estimate the azimuth/elevation angle of arrival (AoA) and angle of departure (AoD) of the reflection path. Then, the distance of the related path is measured by the fine timing measurement protocol. Finally, we transform the AoA and AoD of the multiple non-line-of-sight (NLoS) paths into the direction vector and then obtain the information of targets based on the geometric relationship. The simulation results demonstrate that mm3NLoS can achieve a centimeter-level error with a 2m spacing. Compared to the prior work, it can significantly reduce the performance degradation under the NLoS condition
    • …
    corecore