10 research outputs found

    THE FUTURE AND PROSPECTS OF BIO-CHIPS

    Get PDF
    Nanotechnology deals with manipulation of matter at atomic and molecular level. A general description for nanotechnology is provided by National Nanotechnology Initiative, that defines nanotechnology as the manipulation of matter with at least one dimension is  around 1-100 nanometer. The major application of modern nanotechnology in future would be creation of biological chips which include organ-on-chip, human-on-chip, and lab-on-chip. The world needs easy, readily accessible health care for which one of the solutions would be lab-on-chip. A lab-on-chip is a device that consists of several laboratory functions on single chip of only few millimeters to centimeter in size. Apart from health care a major problem to be addressed is the drug development for out raging diseases where many drugs fail on human trial, for such problems the boon given by nanotechnology is the organ-on-chip and human-on-chip. These chips are multichannel 3D micro fluidic cell culture chips which mimics the organs environment and its interaction within the cells. This would help us to understand the human physiology with respect to each organ thus avoiding the testing of new drugs on animals and the drugs toxicity tests on them. Although the concept is still in infancy stage many initiative are taken to improve this technology as this could replace the already existing traditional technology that is time and cost consuming

    Recurrence of tuberculosis among newly diagnosed sputum positive pulmonary tuberculosis patients treated under the Revised National Tuberculosis Control Programme, India: A multi-centric prospective study

    Get PDF
    <div><p>Introduction</p><p>There is lack of information on the proportion of new smear—positive pulmonary tuberculosis (PTB) patients treated with a 6-month thrice-weekly regimen under Revised National Tuberculosis Control Programme (RNTCP) who develop recurrent TB after successful treatment outcome.</p><p>Objective</p><p>To estimate TB recurrence among newly diagnosed PTB patients who have successfully completed treatment and to document endogenous reactivation or re-infection. Risk factors for unfavourable outcomes to treatment and TB recurrence were determined.</p><p>Methodology</p><p>Adult (aged ≥ 18 yrs) new smear positive PTB patients initiated on treatment under RNTCP were enrolled from sites in Tamil Nadu, Karnataka, Delhi, Maharashtra, Madhya Pradesh and Kerala. Those declared “treatment success” at the end of treatment were followed up with 2 sputum examinations each at 3, 6 and 12 months after treatment completion. MIRU-VNTR genotyping was done to identify endogenous re-activation or exogenous re-infection at TB recurrence. TB recurrence was expressed as rate per 100 person-years (with 95% confidence interval [95%CI]). Regression models were used to identify the risk factors for unfavourable response to treatment and TB recurrence.</p><p>Results</p><p>Of the1577 new smear positive PTB patients enrolled, 1565 were analysed. The overall cure rate was 77% (1207/1565) and treatment success was 77% (1210 /1565). The cure rate varied from 65% to 86%. There were 158 of 1210 patients who had TB recurrence after treatment success. The pooled TB recurrence estimate was 10.9% [95%CI: 0.2–21.6] and TB recurrence rate per 100 person–years was 12.7 [95% CI: 0.4–25]. TB recurrence per 100 person–years varied from 5.4 to 30.5. Endogenous reactivation was observed in 56 (93%) of 60 patients for whom genotyping was done. Male gender was associated with TB recurrence.</p><p>Conclusion</p><p>A substantial proportion of new smear positive PTB patients successfully treated with 6 –month thrice-weekly regimen have TB recurrence under program settings.</p></div

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore