16 research outputs found

    Versatile IEEE-488 data acquisition and control routines for a diode array spectrophotometer

    Get PDF
    The UV-visible diode array spectrophotometer is a work-horse instrument for many laboratories. This article provides simple data acquisition and control routines in Microsoft QuickBasic for a HP-8452A diode array spectrophotometer interfaced to an IBM PC/XT/AT, or compatible, microcomputer. These allow capture of full spectra and measure absorbance at one or several wavelengths at preset time intervals. The variance in absorbance at each wavelength is available as an option

    Removal of heavy-metals from wastewater using a hydrous alumino-silicate mineral from Kenya

    Get PDF
    Heavy metals’ discharge into the environment continues to pose grave concerns around the world. The efficacy of a hydrous alumino-silicate clay (AlSiM) coming obtained from some regions of Kenya to sorb heavy-metal ions from water has been evaluated in batch tests taking into account changes in adsorbent dose, pH, contact time, and temperature. Complete metal removals, from water containing up to 66 mg/L of Pb(II) was achieved using this material at pH value of 5 over a temperature range of 289–333 K. The adsorption data fitted both the Langmuir and the Dubinin-Radushkevich isotherms with R2 > 0.99. The D-R adsorption energy (−11.7 kJ/mol) indicated that chemisorption was the primary reaction in the adsorption process and the derived ∆G0 value (−7.45 kJ/mol) was consistent with the spontaneity of the adsorption process. The kinetic analyses indicated a film-diffusion and surface-chemisorption controlled process. Verification of the initial results on heavy metals-containing wastewaters obtained from a tannery and a leather processing industries revealed excellent adsorption efficacies of AlSiM for Cr3+ (99−100%), Fe3+ (96−98%), Mn2+ (85−97%) and Zn2+ (78−86%). The use of AlSiM as a plausible low-cost adsorbent for heavy-metal decontamination of industrial effluents has therefore been demonstrated

    Computer-controlled apparatus for automated development of continuous flow methods

    Get PDF
    An automated apparatus to assist in the development of analytical continuous flow methods is described. The system is capable of controlling and monitoring a variety of pumps, valves, and detectors through an IBM PC-AT compatible computer. System components consist of two types of peristaltic pumps (including a multiple pump unit), syringe pumps, electrically and pneumatically actuated valves, and an assortment of spectrophotometric and electrochemical detectors. Details of the interface circuitry are given where appropriate. To demonstrate the utility of the system, an automatically generated response surface is presented for the flow injection determination of iron(II) by its reaction with 1,10-phenanthroline
    corecore