18 research outputs found

    Effects of Acupuncture at Neiguan (PC 6) on Electroencephalogram

    Get PDF
    Abstract The aim of this study was to investigate if there were any effects on the electroencephalogram (EEG) of human brain by the manual stimulation of Neiguan (PC 6) acupuncture site. In this paper, two groups of six healthy male volunteers of ages 27.6 ± 14.2 (mean ± SD) and 28.5 ± 13.0 (mean ± SD) and no neurological disease participated in this study. A digital storage of 12-channel EEG recorder was used and spectral analyses of the data set of 18 trials were obtained before, during, and after sham/ manual acupuncture. To minimize artefacts, all data were collected with the subjects alert but eyes closed. No significant changes (P > 0.05) were obtained for the sham acupuncture group. As for the manual acupuncture group, the needle was inserted perpendicularly into the PC 6 acupuncture site and manually stimulated about 15 to 30 seconds to achieve De Qi sensation. Needles were left in place for 30 min and then removed. Analysis of the EEG data due to acupuncture was compared to the baseline data and changes were obtained. First, all trials had an increase in the amplitude and power of the alpha band during manual acupuncture (P < 0.05) when compared with the baseline data. Secondly, in the mean time, the frequency peaks in alpha band of 12-channels were all synchronized with much smaller standard deviation (P < 0.01). Thirdly, the manual acupuncture effects of higher power and synchronized frequencies persisted for at least 10 minutes after the experiment (P < 0.05) and did not disappear immediately for all 18 experiments. Finally, we hypothesized that the higher power and synchronized rhythms in brain oscillations may have to do with autonomic nervous system

    A review on the impacts of compost on soil nitrogen dynamics

    No full text
    With the depletion of soil quality, the increased use of inorganic fertiliser is required to cope with the increasing food demand. The increasing use of inorganic fertiliser has become a burden to both the economy and environment. The overuse of nitrogen fertiliser can cause the leaching of NO3- to the surrounding water source and the emissions of N2O and NO to the atmosphere. Besides the environmental issues associated with conventional farming, more attention has been drawn to the rapid population growth and urbanisation that has led to the production of abundant municipal solid waste (MSW). To overcome these problems, composting can be an alternative option to both managing MSW and replacing inorganic fertiliser. As a biological process, composting can utilise the organic fraction of MSW as the raw material to produce compost, a stable form of organic matter that can be used as soil amendment or organic fertiliser. Although the utilisation of compost as an organic fertiliser is quite well studied, less research had focused on the nitrogen dynamic after compost application to soil. It is essential to figure out the correlation between compost application and soil nitrogen dynamic in order to prevent further nitrogen loss as a pollutant after compost application. This paper reviews the soil nitrogen cycle and the potential of nitrogen loss prevention with the application of compost. The application of compost is providing some promising effects in term of soil organic carbon and nutrients replenishment and soil microbial population enhancement. The effects of compost to soil are highly dependent on the characteristics of the raw materials for composting. The presence of high nutrient in compost is not always a good thing since it also increases the risk of nutrient loss through leaching or gas emission. The combination between nutrient rich and nutrient poor compost can be an alternative way to prevent nutrient loss. N2O emission from soil is always associated with high nitrogen content and anaerobic condition in soil. The mitigation of N2O emission can be achieved by compost application, and the addition of biochar during composting process can further enhance the effect

    Environmental and economic feasibility of an integrated community composting plant and organic farm in Malaysia

    No full text
    Waste prevention and management become a significant issue worldwide to achieve sustainable development. Similar to many developing countries, Malaysia has faced severe problems in waste management due to its rapid economic growth and urbanisation. The municipal solid waste (MSW)production rate in Malaysia had increased significantly in a recent year, ranging from 0.8 to 1.25 kg/person∙d. The wastes generated contain a high amount of organic portion with high moisture content. Improper MSW management practice or delayed in waste collection and transportation can lead to severe health issues. This paper presents a case study in Johor Bahru, Malaysia (FOLO Farm), in which a composting prototype is used as the waste management technology to recycle the food and vegetable wastes. The greenhouse gases (GHG)mitigation and economic feasibility of the integrated composting and organic farming in this study are reported. This study showed a reduction of 27% of GHG by diverting the food and vegetable wastes from open dumping to the composting plant. Higher reduction rate (∼44%)can be achieved with better planning of waste collection route and applying the mitigation strategies during the composting process. By adapting the membership concept, this project not only ensures the economic feasibility of running a composting plant but also secures a channel for the growth of vegetable distribution. This study provides an insight into the feasibility and desirability to implement a pilot-scale composting for organic waste management to achieve the low carbon and self-sustain community

    Selection of parameters for soil quality following compost application: A ranking method

    No full text
    Intensive agricultural practices with excessive use of chemical fertiliser have led to the deterioration of soil fertility where soil losses its ability to sustain a consistent crop system with high yield. Compost is a potential substitution to chemical fertiliser. As a biological additive, compost can improve soil quality and crop productivity, controlling plant diseases and reduce nutrient loss and water pollution. However, the effect of compost application to enhance the quality of the soil may be inconsistent due to the slow release nature of the nutrients, compost quality, types of feedstocks and other factors. To evaluate the effects of compost application, it may involve a large number of parameter analyses, which can be costly and time ineffective. There is no indicator to reduce the number of analyses concerning the effect of compost application on soil fertility. In this study, a ranking method is proposed to identify the minimum number of parameters able to track the effect of compost application on soil fertility and the environmental impact. A total of 23 soil parameters were selected through literature review and ranked for their importance to show the effect of compost use. The ranking method was developed based on (1) the reporting frequency of environmental and soil fertility parameters and (2) impact of the selective parameter to the environment. Soil C and N contents were found to be the most frequently reported parameters (85 and 90 %) to affect soil fertility upon compost application. Both contents in the soil also change significantly before and after compost application. Heavy metals and N2O emissions were found to impact the environment most due to the toxicity of heavy metal to the environment and human health and high global warming potential of N2O. Based on the ranking method, nine parameters (N, NO3--N, P, K, micro-nutrients, heavy metals, C, pH and N2O emissions) were selected. 60 % of soil analyses were reduced following this ranking method. For the future study, a weightage system could be implemented on each criterion to decide the more essential parameters to be evaluated based on different soil or crop type and under different agricultural practices

    The role of the genomic mutation signature and tumor mutation burden on relapse risk prediction in head and neck squamous cell carcinoma after concurrent chemoradiotherapy

    No full text
    Abstract Personalized genetic profiling has focused on improving treatment efficacy and predicting risk stratification by identifying mutated genes and selecting targeted agents according to genetic testing. Therefore, we evaluated the role of genetic profiling and tumor mutation burden (TMB) using next-generation sequencing in patients with head and neck squamous cell carcinoma (HNSC). The relapse mutation signature (RMS) and chromatin remodeling mutation signature (CRMS) were explored to predict the risk of relapse in patients with HNSC treated with concurrent chemoradiotherapy (CCRT) with platinum-based chemotherapy. Patients in the high RMS and CRMS groups showed significantly shorter relapse-free survival than those in the low RMS and CRMS groups, respectively (p < 0.001 and p = 0.006). Multivariate Cox regression analysis showed that extranodal extension, CCRT response, and three somatic mutation profiles (TMB, RMS, and CRMS) were independent risk predictors for HNSC relapse. The predictive nomogram showed satisfactory performance in predicting relapse-free survival in patients with HNSC treated with CCRT

    The Cost-Effectiveness Analysis of Transplant-Ineligible Myeloma Patients with Bortezomib plus Thalidomide plus Dexamethasone (VTD) or Bortezomib plus Melphalan plus Prednisolone (VMP) Treatment in Southern Taiwan

    No full text
    Background: This study aimed to evaluate the cost-effectiveness of treating transplant-ineligible myeloma patients with either a bortezomib plus thalidomide plus dexamethasone (VTD) or a bortezomib plus melphalan plus prednisolone (VMP) treatment in Taiwan. Methods: Newly diagnosed, transplant-ineligible myeloma patients with VTD or VMP therapy were enrolled from two medical centers in southern Taiwan. Quality-adjusted life years (QALYs) were used as the measurement unit of the effectiveness evaluation, and the incremental cost-effectiveness ratio (ICER) was used for comparison between the two groups. A net monetary benefit approach and cost-effectiveness acceptability curve were also used for the cost-effectiveness assessment. A one-way sensitivity analysis was used to check the impact of different parameters. In total, 77 patients were enrolled in the study with 43 patients in the VTD group and 34 patients in the VMP group. Clinical presentations were similar without significant difference, except the VTD group had a higher survival rate (p = 0.029). Comparisons of the two groups over an eight-month time horizon revealed a significant lower mean of direct medical costs in the VTD group than in the VMP group (p &lt; 0.001), and a significantly higher average QALY was gained (p &lt; 0.001). Conclusions: The study demonstrated the greater clinical benefit and cost-effectiveness of VTD compared to VMP therapy in transplant-ineligible, newly diagnosed myeloma patients
    corecore