201 research outputs found

    The role of lateral modulation in orientation-specific adaptation effect

    Get PDF
    Center-surround modulation in visual processing reflects a normalization process of contrast gain control in the responsive neurons. Prior adaptation to a clockwise (CW) tilted grating, for example, leads to the percept of counterclockwise tilt in a vertical grating, referred to as the tilt-aftereffect (TAE). We previously reported that the magnitude of the TAE is modulated by adding a same-orientation annular surround to an adapter, suggesting inhibitory lateral modulation. To further examine the property of this lateral modulation effect on the perception of a central target, we here used center-surround sinusoidal patterns as adapters and varied the adapter surround and center orientations independently. The target had the same spatial extent as the adapter center with no physical overlap with the adapter surround. Participants were asked to judge the target orientation as tilted either CW or counterclockwise from vertical after adaptation. Results showed that, when the surround orientation was held constant, the TAE magnitude was determined by the adapter center, peaking between 10° and 20° of tilt. More important, the adapter surround orientation modulated the adaptation effect such that the TAE magnitude first decreased and then increased as the surround orientation became increasingly more different from that of the center, suggesting that the surround modulation effect was indeed orientation specific. Our data can be accounted for by a divisive inhibition model, in which (1) the adaptation effect is represented by increasing the normalizing constant and (2) the surround modulation is captured by two multiplicative sensitivity parameters determined by the adapter surround orientation

    Neural correlates of lateral modulation and perceptual filling-in in center-surround radial sinusoidal gratings: an fMRI study

    Get PDF
    We investigated lateral modulation effects with functional magnetic resonance imaging. We presented radial sinusoidal gratings in random sequence: a scotoma grating with two arc-shaped blank regions (scotomata) in the periphery, one in the left and one in the right visual field, a center grating containing pattern only in the scotoma regions, and a full-field grating where the pattern occupied the whole screen. On each trial, one of the three gratings flickered in counterphase for 10 s, followed by a blank period. Observers were instructed to perform a fixation task and report whether filling-in was experienced during the scotoma condition. The results showed that the blood-oxygen-level-dependent signal was reduced in areas corresponding to the scotoma regions in the full-field compared to the center condition in V1 to V3 areas, indicating a lateral inhibition effect when the surround was added to the center pattern. The univariate analysis results showed no difference between the filling-in and no-filling-in trials. However, multivariate pattern analysis results showed that classifiers trained on activation pattern in V1 to V3 could differentiate between filling-in and no-filling-in trials, suggesting that the neural activation pattern in visual cortex correlated with the subjective percept

    Direct growth of mm-size twisted bilayer graphene by plasma-enhanced chemical vapor deposition

    Get PDF
    Plasma enhanced chemical vapor deposition (PECVD) techniques have been shown to be an efficient method to achieve single-step synthesis of high-quality monolayer graphene (MLG) without the need of active heating. Here we report PECVD-growth of single-crystalline hexagonal bilayer graphene (BLG) flakes and mm-size BLG films with the interlayer twist angle controlled by the growth parameters. The twist angle has been determined by three experimental approaches, including direct measurement of the relative orientation of crystalline edges between two stacked monolayers by scanning electron microscopy, analysis of the twist angle-dependent Raman spectral characteristics, and measurement of the Moiré period with scanning tunneling microscopy. In mm-sized twisted BLG (tBLG) films, the average twist angle can be controlled from 0° to approximately 20°, and the angular spread for a given growth condition can be limited to < 7°. Different work functions between MLG and BLG have been verified by the Kelvin probe force microscopy and ultraviolet photoelectron spectroscopy. Electrical measurements of back-gated field-effect-transistor devices based on small-angle tBLG samples revealed high-quality electric characteristics at 300 K and insulating temperature dependence down to 100 K. This controlled PECVD-growth of tBLG thus provides an efficient approach to investigate the effect of varying Moiré potentials on tBLG

    Study on the Stability of DeoxyArbutin in an Anhydrous Emulsion System

    Get PDF
    The skin-whitening agent, deoxyArbutin, is a potent tyrosinase inhibitor that is safer than hydroquinone and arbutin. However, it is thermolabile in aqueous solutions, where it decomposes to hydroquinone. Pharmaceutical and cosmetic emulsions are normally oil-in-water (o/w) or water-in-oil (w/o) systems; however, emulsions can be formulated with no aqueous phase to produce an anhydrous emulsion system. An anhydrous emulsion system could offer a stable vehicle for compounds that are sensitive to hydrolysis or oxidation. Therefore, to enhance the stability of deoxyArbutin in formulations, we chose the polyol-in-silicone, anhydrous emulsion system as the basic formulation for investigation. The quantity of deoxyArbutin and the accumulation of hydroquinone in both hydrous and anhydrous emulsions at various temperatures were analyzed through an established high performance liquid chromatographic (HPLC) method. The results indicated that water increased the decomposition of deoxyArbutin in the formulations and that the polyol-in-silicone, oil-based, anhydrous emulsion system provided a relatively stable surrounding for the deoxyArbutin that delayed its degradation at 25 °C and 45 °C. Moreover, the composition of the inner hydrophilic phase, containing different amounts of glycerin and propylene glycol, affected the stability of deoxyArbutin. Thus, these results will be beneficial when using deoxyArbutin in cosmetics and medicines in the future

    Comparison of Renal Function and Other Health Outcomes in Vegetarians versus Omnivores in Taiwan

    Get PDF
    Renal disease is one of the top 10 leading causes of death, and the incidence of end-stage renal disease in Taiwan is the highest in the world. Many dietitians consider the diet of plant origin consumed by vegans to be ‘lighter’ and ‘more healthful’ than the diet of both plant and animal origin consumed by omnivores. Dietary protein has significant effects on renal functions. The study explored the effects of both the diets on renal functions. The study subjects included 102 Buddhist nun vegetarians and an equal number of matched control group (omnivores). A cross-sectional study was performed to investigate the effects of the diet of plant origin and the diet of both plant and animal origin on renal functions. There was no difference in the renal functions between the two groups. However, systolic blood pressure, blood urea nitrogen, serum sodium, glucose, cholesterol levels, and urinary specific gravity were lower in the vegetarian group. Although these results were compatible with general concepts regarding diet of plant origin, after adjusting for age, the duration of intake of this diet had no effect on the renal functions. Based on the findings, it is concluded that the renal functions, in terms of the estimated glomerular filtration rate, were not different between the vegetarians and the omnivores

    Identification of novel DNA methylation inhibitors via a two-component reporter gene system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Targeting abnormal DNA methylation represents a therapeutically relevant strategy for cancer treatment as demonstrated by the US Food and Drug Administration approval of the DNA methyltransferase inhibitors azacytidine and 5-aza-2'-deoxycytidine for the treatment of myelodysplastic syndromes. But their use is associated with increased incidences of bone marrow suppression. Alternatively, procainamide has emerged as a potential DNA demethylating agent for clinical translation. While procainamide is much safer than 5-aza-2'-deoxycytidine, it requires high concentrations to be effective in DNA demethylation in suppressing cancer cell growth. Thus, our laboratories have embarked on the pharmacological exploitation of procainamide to develop potent DNA methylation inhibitors through lead optimization.</p> <p>Methods</p> <p>We report the use of a DNA methylation two-component enhanced green fluorescent protein reporter system as a screening platform to identify novel DNA methylation inhibitors from a compound library containing procainamide derivatives.</p> <p>Results</p> <p>A lead agent IM25, which exhibits substantially higher potency in <it>GSTp1 </it>DNA demethylation with lower cytotoxicity in MCF7 cells relative to procainamide and 5-aza-2'-deoxycytidine, was identified by the screening platform.</p> <p>Conclusions</p> <p>Our data provide a proof-of-concept that procainamide could be pharmacologically exploited to develop novel DNA methylation inhibitors, of which the translational potential in cancer therapy/prevention is currently under investigation.</p
    corecore