50 research outputs found

    Laser in Glaucoma and Ocular Hypertension Trial (LIGHT) in China - A Randomized Controlled Trial: Design and Baseline Characteristics

    Get PDF
    PURPOSE: To describe the baseline characteristics of a trial to evaluate whether selective laser trabeculoplasty (SLT), as a first-line treatment, provides superior economic and health-related quality of life outcomes to medical treatment in China. DESIGN: The LiGHT China trial is an unmasked, single-center, pragmatic, randomized controlled trial. METHODS: A total of 771 previously undiagnosed patients with primary open angle glaucoma (POAG, 622 patients) or ocular hypertension (OHT, 149 patients) at Zhongshan Ophthalmic Center were recruited from March 2015 to January 2019. Subjects were randomized to SLT-1st (followed by medication then surgery when required) or Medicine-1st (medication followed by surgery when required). The primary outcome was health-related quality of life (HRQL). The secondary outcomes were clinical outcomes, cost, cost-effectiveness, Glaucoma Utility Index, Glaucoma Symptom Scale, visual function, and safety. RESULTS: The mean age of POAG patients was 49.8 years and 38.8 years for OHT. The median intraocular pressure was 20 mm Hg for the 1,105 POAG eyes and 24 mm Hg for the 271 OHT eyes. POAG eyes had thinner central cornea thickness (CCT, 536 µm) than OHT eyes (545 µm). Median mean deviation of the visual field in POAG eyes was -4.2 dB. Median refractive error was -1.5 D for OHT eyes and -1.25 D for POAG eyes. There was no difference between POAG and OHT patients on baseline scores of GUI, GSS and VF-14. The difference between OHT and POAG on the EQ-5D-5L was 0.024. CONCLUSIONS: Compared with participants in the LiGHT UK trial, participants in this trial were younger, more myopic and had more severe visual field defects

    A Carbon Composite Film with Three-Dimensional Reticular Structure for Electromagnetic Interference Shielding and Electro-Photo-Thermal Conversion

    No full text
    The design of flexible wearable electronic devices that can shield electromagnetic waves and work in all weather conditions remains a challenge. We present in this work a low-cost technology to prepare an ultra-thin carbon fabric–graphene (CFG) composite film with outstanding electromagnetic interference shielding effectiveness (EMI SE) and electro-photo-thermal effect. The compatibility between flexible carbon fabric skeleton and brittle pure graphene matrix empowers this CFG film with adequate flexibility. The reticular fibers and porous structures play a vital role in multiple scattering and absorption of electromagnetic waves. In the frequency range of 30–1500 MHz, the CFG film can achieve a significantly high EMI SE of about 46 dB at tiny thickness (0.182 mm) and density (1.4 g cm−3) predominantly by absorption. At low safe voltages or only in sunlight, the film can self-heat to its saturation value rapidly in 40 s. Once the electricity or light supply is stopped, it can quickly dissipate heat in tens of seconds. A combination of the EMI SE and the prominent electro-photo-thermal effect further enables such a remarkable EMI shielding film to have more potential applications for communication devices in extreme zones

    Fibroblast diversity and plasticity in the tumor microenvironment: roles in immunity and relevant therapies

    No full text
    Abstract Cancer-associated fibroblasts (CAFs), enriched in the tumor stroma, have received increasing attention because of their multifaceted effects on tumorigenesis, development, metastasis, and treatment resistance in malignancies. CAFs contributed to suppressive microenvironment via different mechanisms, while CAFs also exerted some antitumor effects. Therefore, CAFs have been considered promising therapeutic targets for their remarkable roles in malignant tumors. However, patients with malignancies failed to benefit from current CAFs-targeted drugs in many clinical trials, which suggests that further in-depth investigation into CAFs is necessary. Here, we summarize and outline the heterogeneity and plasticity of CAFs mainly by exploring their origin and activation, highlighting the regulation of CAFs in the tumor microenvironment during tumor evolution, as well as the critical roles performed by CAFs in tumor immunity. In addition, we summarize the current immunotherapies targeting CAFs, and conclude with a brief overview of some prospects for the future of CAFs research in the end. Video Abstrac

    Influence of Vanadium on the Microstructure and Mechanical Properties of Medium-Carbon Steels for Wheels

    No full text
    Steels used for high-speed train wheels require a combination of high strength, toughness, and wear resistance. In 0.54% C-0.9% Si wheel steel, the addition of 0.075 or 0.12 wt % V can refine grains and increase the ferrite content and toughness, although the influence on the microstructure and toughness is complex and poorly understood. We investigated the effect of 0.03, 0.12, and 0.23 wt % V on the microstructure and mechanical properties of medium-carbon steels (0.54% C-0.9% Si) for train wheels. As the V content increased, the precipitation strengthening increased, whereas the grain refinement initially increased, and then it remained unchanged. The increase in strength and hardness was mainly due to V(C,N) precipitation strengthening. Increasing the V content to 0.12 wt % refined the austenite grain size and pearlite block size, and increased the density of high-angle ferrite boundaries and ferrite volume fraction. The grain refinement improved the impact toughness. However, the impact toughness then reduced as the V content was increased to 0.23 wt %, because grain refinement did not further increase, whereas precipitation strengthening and ferrite hardening occurred

    Neural correlates of harm avoidance: a multimodal meta-analysis of brain structural and resting-state functional neuroimaging studies.

    No full text
    Harm avoidance (HA) is a Cloninger personality trait that describes behavioural inhibition to avoid aversive stimuli. It serves as a predisposing factor that contributes to the development of mental disorders such as anxiety and major depressive disorder. Neuroimaging research has identified some brain anatomical and functional correlates of HA, but reported findings are inconsistent. We therefore conducted a multimodal meta-analysis of whole-brain structural and resting-state functional neuroimaging studies to identify the most stable neural substrate of HA. Included were a total of 10 structural voxel-based morphometry studies (11 datasets) and 13 functional positron emission tomography or single photon emission computed tomography studies (16 datasets) involving 3053 healthy participants without any psychiatric or neurological disorders evaluated for HA using the Three-Dimensional Personality Questionnaire (TPQ) or the Temperament and Character Inventory (TCI). The meta-analysis revealed brain volumetric correlates of HA in parietal and temporal cortices, and resting-state functional correlates in prefrontal, temporal and parietal gray matter. Volumetric and functional correlates co-occurred in the left superior frontal gyrus and left middle frontal gyrus, and were dissociated in the left rectus gyrus. Our meta-analysis is the first study to give a comprehensive picture of the structural and functional correlates of HA, a contribution that may help bridge the grievous gap between the neurobiology of HA and the pathogenesis, prevention and treatment of HA-related mental disorders

    Durability Evaluation of Phosphogypsum-Based Cemented Backfill Through Drying-Wetting Cycles

    No full text
    In this study, the durability of phosphogypsum (PG)-based cemented backfill was investigated by drying-wetting cycles to explore deterioration of its strength and the release of impurities. The leachates in this test were composed of deionized water, 5% Na2SO4 solution, 5% NaCl solution, and a range of sulfuric acid solutions with pH values of 1.5, 3, and 5. After drying-wetting cycles, unconfined compressive strength (UCS), visual deterioration, porosity, microstructure and concentrations of phosphate and fluoride in the leachates were measured. The results showed that both saline and acidic solutions could lead to strength reduction of PG-based cemented backfill under different deterioration mechanisms. The mechanical damage of salinity was caused by micro-cracking and degradation of C−S−H. However, the H+ broke the backfill by dissolving hydration products, leaving the conjunctures between PG particles weakened. Furthermore, the environmental impact was investigated by measuring the concentration of phosphate and fluoride in the leachates. In acidic solutions, the release of phosphate and fluoride was greatly enhanced by H+. Compared to the great strength deterioration in saline leachates, the concentration of phosphate and fluoride were similar to that of deionized water, indicating that saline solutions had little impact on the release of hazardous impurities
    corecore