6 research outputs found

    Anticonvulsant effect of minocycline on pentylenetetrazole-induced seizure in mice: involvement of nitric oxide and N-methyl-D-aspartate receptor

    Get PDF
    Anticonvulsant effects of minocycline have been explored recently. This study was designed to examine the anticonvulsant effect of acute administration of minocycline on pentylenetetrazole-induced seizures in mouse considering the possible role of the nitric oxide/N-methyl-D-aspartate (NMDA) pathway. We induced seizure using intravenous administration of pentylenetetrazole. Our results showed that acute administration of minocycline increased the seizure threshold. Furthermore, co-administration of subeffective doses of the nonselective nitric oxide synthase (NOS) inhibitor NG-L-arginine methyl ester (10 mg/kg) and the neuronal NOS inhibitor 7-nitroindazole (40 mg/kg) enhanced the anticonvulsant effect of subeffective doses of minocycline (40 mg/kg). We found that inducible NOS inhibitor aminoguanidine (100 mg/kg) had no effect on the antiseizure effect of minocycline. Moreover, L-arginine (60 mg/kg), as a NOS substrate, reduced the anticonvulsant effect of minocycline. We also demonstrated that pretreatment with the NMDAreceptor antagonists ketamine (0.5 mg/kg) and MK-801 (0.05 mg/kg) increased the anticonvulsant effect of subeffective doses of minocycline. Results showed that minocycline significantly decreased the hippocampal nitrite level. Furthermore, co-administration of a neuronal NOS inhibitor like NMDA receptor antagonists augmented the effect of minocycline on the hippocampal nitrite level. In conclusion, we revealed that anticonvulsant effect of minocycline might be, at least in part, due to a decline in constitutive hippocampal nitric oxide activity as well as inhibition of NMDA receptors

    NMDA receptor antagonists attenuate the proconvulsant effect of juvenile social isolation in male mice

    Get PDF
    Experiencing psychosocial stress inearly life, suchas social isolationstress (SIS), is knowntohavenegative enduring effects on the development of the brain and behavior. In addition to anxiety and depressive-like behaviors, we previously showed that juvenile SIS increases susceptibility to pentylenetetrazole (PTZ)- induced seizures in mice through enhancing the nitrergic system activity in the hippocampus. In this study, we investigated the possible involvement of N-methyl-d-aspartate (NMDA) receptors in proconvulsant effects of juvenile SIS. Applying 4 weeks of SIS to juvenile male mice at postnatal day 21–23, we observed an increased susceptibility to PTZ as well as anxiety and depressive-like behaviors in adult mice. Intraperitoneal (i.p.) administration of NMDA receptor antagonists, MK-801 (0.05 mg/kg) and ketamine (0.5 mg/kg), reversed the proconvulsant effects of SIS in Isolated (and not social) housed animals. Coadministration of non-effective doses of nitric oxide synthase (NOS) inhibitors, 7NI (25 mg/kg) and L-NAME (10 mg/kg), with NMDA receptor antagonists, MK-801 (0.01 mg/kg) and ketamine (0.1 mg/kg) attenuated the proconvulsant effects of juvenile SIS only in isolated housed mice. Also, using real time RT-PCR, we showed that hippocampal upregulation of NR2B subunit of NMDA receptor may play a critical role in proconvulsant effects of juvenile SIS by dysregulation of NMDA/NO pathway. In conclusion, results of present study revealed that experiencing SIS during adolescence predisposes the co-occurrence of seizure disorders with psychiatric comorbidities and also, alteration of NMDA receptor structure and function in hippocampus plays a role in proconvulsant effects of juvenile SIS through enhancing the NMDA/NO pathwa

    Experiencing neonatal maternal separation increased the seizure threshold in adult male mice: Involvement of the opioid system

    Get PDF
    Experiencing early-life stress has been considered as a potent risk factor for the development of many of brain disorders, including seizures. Intervening mechanisms through which neonatal maternal separation (MS) alters the seizure susceptibility in adulthood have not been well studied. In the current study, by applying 180 min of MS stress (PND 2–14), we determined the seizure susceptibility and considered the role of the opioid system. Maternal separation increased the seizure threshold, and administration of anticonvulsant/proconvulsant doses of morphine (1 and 30 mg/kg, respectively) reversed the impact of MS. Using tail flick and hot plate tests, we exposed animals to 30 min Restraint stress (RS) and found that MS decreased the pain threshold, suggesting the hyporesponsiveness of the opioid system. These results supported the abnormal seizure activity observed in the MS mice and suggested that abnormalities in the opioid system following MS alter seizure susceptibility in later life

    Protective effects of gabapentin against the seizure susceptibility and comorbid behavioral abnormalities in the early socially isolated mice

    Get PDF
    Adolescence is a pivotal period of brain development during lifespan, which is sensitive to stress exposure. Early social isolation stress (SIS) is known to provoke a variety of psychiatric comorbidities as well as seizure risk. Psychiatric comorbidities present challenging dilemmas for treatment and management in people with seizure disorders. In this study, we aimed to investigate whether gabapentin (GBP) as an anti-epileptic drug is able to alleviate the seizure activity as well as comorbid behavioral abnormalities in socially isolated mice. Results showed that early SIS induced proconvulsant effects along with depressive, aggressive and anxiety-like behaviors. Whereas the administration of both acute and chronic GBP at sub-effective doses produced no alterations in the behavioral profile of socially conditioned counterparts the same treatments effectively reversed the seizure susceptibility to pentylenetetrazole and behavioral deficits in isolated mice. Results of the study indicate that 1) Early SIS could be considered as an animal model of psychosocial stress to investigate the psychiatric comorbidities in seizure disorders, 2) Chronic administration of low dose GBP prevented the shaping of behavioral abnormalities in adulthood, 3) Chronic administration of low dose GBP produced no negative behavioral effects in socially conditioned mice suggesting the safety of the drug, 4) Gabapentin at low doses may be considered as an agent for management of epilepsy in individuals with psychiatric comorbidities

    Morphine modulates the effects of histamine H1 and H3 receptors on seizure susceptibility in pentylenetetrazole-induced seizure model of mice

    Get PDF
    Histamine regulates release of neurotransmitters such as dopamine, serotonin, gamma-aminobutyric acid (GABA), glutamate and also is involved in several functions in central nervous system (CNS). It has been shown that histamine participates in disorders like seizure. It has been well documented that morphine dose-dependently induces anti or proconvulsant effects. In the current study, we firstly showed that morphine (1 mg/kg) exerts anticonvulsant effects which significantly reversed by naltrexone administration. Secondly, we determined seizure threshold for H1 and H3 receptors agonists and antagonists in mouse model of pentylenetetrazole (PTZ)-induced clonic seizures. Our results showed that activation of H1 receptors by 2-(2-Pyridyl)-ethylamine exerts anticonvulsant properties while inhibition of H1 receptors by pyrilamine maleate induced proconvulsant effects. Furthermore, we showed that immepip dihydrobromide, a H3 receptor agonist, increased seizure susceptibility to PTZ whereas thioperamide, a H3 receptor antagonist increased seizure threshold. We also revealed that pretreatment with morphine potently reversed the effects of histaminergic system on seizure threshold suggesting the involvement of opioid system in alteration of seizure threshold by histaminergic drug

    Lithium attenuates the proconvulsant effect of adolescent social isolation stress via involvement of the nitrergic system

    Get PDF
    In this study, we tested whether acute administration of lithium mitigates the deleterious effect of adolescent social isolation stress (SIS) on seizure susceptibility. In comparison with socially conditioned (SC) mice, isolated conditioned (IC) mice exhibited an increase in seizure susceptibility to pentylenetetrazole. Acute administration of lithium (10 mg/kg) reversed the proconvulsant effect of SIS in IC mice, but this effect was not observed in SC mice. Coadministration of subthreshold doses of lithium (3 mg/kg) with nitric oxide synthase (NOS) inhibitors reversed the effect of SIS on seizure susceptibility and decreased hippocampal nitrite levels in IC animals. In addition, a subthreshold dose of a nitric oxide precursor reduced the protective effect of lithium on seizure susceptibility and increased nitrite levels in the hippocampus of IC mice. These results suggest that lithium exerts a protective influence against the proconvulsant effect of adolescent SIS via a nitrergic system that includes activation of neuronal NOS in the hippocampus
    corecore