88 research outputs found

    Heavy Thresholds, Slepton Masses and the Ό\mu Term in Anomaly Mediated Supersymmetry Breaking

    Get PDF
    The effects of heavy mass thresholds on anomaly-mediated soft supersymmetry breaking terms are discussed. While heavy thresholds completely decouple to lowest order in the supersymmetry breaking, it is argued that they do affect the breaking terms at higher orders. The relevant contributions typically occur at lower order in the loop expansion compared to purely anomaly mediated contributions. The non decoupling contributions may be used to render models in which the only source of supersymmetry breaking is anomaly mediation viable, by generating positive contributions to the sleptons' masses squared. They can also be used to generate acceptable mu- and B-terms.Comment: 25 pages, late

    Bounds on Unparticles from the Higgs Sector

    Get PDF
    We study supersymmetric QCD in the conformal window as a laboratory for unparticle physics, and analyze couplings between the unparticle sector and the Higgs sector. These couplings can lead to the unparticle sector being pushed away from its scale invariant fixed point. We show that this implies that low energy experiments will not be able to see unparticle physics, and the best hope of seeing unparticles is in high energy collider experiments such as the Tevatron and the LHC. We also demonstrate how the breaking of scale invariance could be observed at these experiments.Comment: 9 pages, 3 figure

    The Super-little Higgs

    Full text link
    Supersymmetry combined with little-Higgs can render the Higgs vev super-little, providing models of electroweak symmetry breaking free from fine-tunings. We discuss the difficulties that arise in implementing this idea and propose one simple successful model. Thanks to appropriately chosen Higgs representations, D-terms give no tree-level mass term to the Goldstone. The fermion representations are anomaly free, generation independent and embeddable into an SU(6) GUT. A simple mechanism provides the large top quark mass.Comment: Additional mechanism to get a quartic coupling discussed. References adde

    Visible Effects of the Hidden Sector

    Full text link
    The renormalization of operators responsible for soft supersymmetry breaking is usually calculated by starting at some high scale and including only visible sector interactions in the evolution equations, while ignoring hidden sector interactions. Here we explain why this is correct only for the most trivial structures in the hidden sector, and discuss possible implications. This investigation was prompted by the idea of conformal sequestering. In that framework hidden sector renormalizations by nearly conformal dynamics are critical. In the original models of conformal sequestering it was necessary to impose hidden sector flavor symmetries to achieve the sequestered form. We present models which can evade this requirement and lead to no-scale or anomaly mediated boundary conditions; but the necessary structures do not seem generic. More generally, the ratios of scalar masses to gaugino masses, the Ό\mu-term, the BΌB\mu-term, AA-terms, and the gravitino mass can be significantly affected.Comment: 23 pages, no figure

    Renormalization Group Invariance of Exact Results in Supersymmetric Gauge Theories

    Get PDF
    We clarify the notion of Wilsonian renormalization group (RG) invariance in supersymmetric gauge theories, which states that the low-energy physics can be kept fixed when one changes the ultraviolet cutoff, provided appropriate changes are made to the bare coupling constants in the Lagrangian. We first pose a puzzle on how a quantum modified constraint (such as Pf(Q^i Q^j) = \Lambda^{2(N+1)} in SP(N) theories with N+1 flavors) can be RG invariant, since the bare fields Q^i receive wave function renormalization when one changes the ultraviolet cutoff, while we naively regard the scale \Lambda as RG invariant. The resolution is that \Lambda is not RG invariant if one sticks to canonical normalization for the bare fields as is conventionally done in field theory. We derive a formula for how \Lambda must be changed when one changes the ultraviolet cutoff. We then compare our formula to known exact results and show that their consistency requires the change in \Lambda we have found. Finally, we apply our result to models of supersymmetry breaking due to quantum modified constraints. The RG invariance helps us to determine the effective potential along the classical flat directions found in these theories. In particular, the inverted hierarchy mechanism does not occur in the original version of these models.Comment: LaTeX, 26 page

    Brane Boxes: Bending and Beta Functions

    Get PDF
    We study the type IIB brane box configurations recently introduced by Hanany and Zaffaroni. We show that even at finite string coupling, one can construct smooth configurations of branes with fairly arbitrary gauge and flavor structure. Limiting our attention to the better understood case where NS-branes do not intersect over a four dimensional surface gives some restrictions on the theories, but still permits many examples, both anomalous and non-anomalous. We give several explicit examples of such configurations and discuss what constraints can be imposed on brane-box theories from bending considerations. We also discuss the relation between brane bending and beta-functions for brane-box configurations.Comment: latex, 18 pages, 8 figure

    Fermions on an Interval: Quark and Lepton Masses without a Higgs

    Full text link
    We consider fermions on an extra dimensional interval. We find the boundary conditions at the ends of the interval that are consistent with the variational principle, and explain which ones arise in various physical circumstances. We apply these results to higgsless models of electroweak symmetry breaking, where electroweak symmetry is not broken by a scalar vacuum expectation value, but rather by the boundary conditions of the gauge fields. We show that it is possible to find a set of boundary conditions for bulk fermions that would give a realistic fermion mass spectrum without the presence of a Higgs scalar, and present some sample fermion mass spectra for the standard model quarks and leptons as well as their resonances.Comment: LaTeX, 36 pages, 5 figure

    Duality between simple-group gauge theories and some applications

    Full text link
    In this paper we investigate N=1 supersymmetric gauge theories with a product gauge group. By using smoothly confining dynamics, we can find new dualities which include higher-rank tensor fields, and in which the dual gauge group is simple, not a product. Some of them are dualities between chiral and non-chiral gauge theories. We also discuss some applications to dynamical supersymmetry breaking phenomena and new confining theories with a tree-level superpotential.Comment: 33 pages, LaTeX, references added, version to appear in PR

    Lectures on Supersymmetry Breaking

    Get PDF
    We review the subject of spontaneous supersymmetry breaking. First we consider supersymmetry breaking in a semiclassical theory. We illustrate it with several examples, demonstrating different phenomena, including metastable supersymmetry breaking. Then we give a brief review of the dynamics of supersymmetric gauge theories. Finally, we use this dynamics to present various mechanisms for dynamical supersymmetry breaking. These notes are based on lectures given by the authors in 2007, at various schools.Comment: 47 pages. v2: minor correction

    Constraints on Astro-unparticle Physics from SN 1987A

    Full text link
    SN 1987A observations have been used to place constraints on the interactions between standard model particles and unparticles. In this study we calculate the energy loss from the supernovae core through scalar, pseudo scalar, vector, pseudo vector unparticle emission from nuclear bremsstrahlung for degenerate nuclear matter interacting through one pion exchange. In order to examine the constraints on dU=1d_{\cal U}=1 we considered the emission of scalar, pseudo scalar, vector, pseudo vector and tensor through the pair annihilation process e+e−→UÎłe^+e^-\to {\cal U} \gamma . In addition we have re-examined other pair annihilation processes. The most stringent bounds on the dimensionless coupling constants for dU=1d_{\cal U} =1 and ΛU=mZ\Lambda_{\cal U}= m_Z are obtained from nuclear bremsstrahlung process for the pseudo scalar and pseudo-vector couplings ∣λ0,1PâˆŁâ‰€4×10−11\bigl|\lambda^{\cal P}_{0,1}\bigr|\leq 4\times 10^{-11} and for tensor interaction, the best limit on dimensionless coupling is obtained from e+e−→UÎłe^+ e^-\to {\cal U} \gamma and we get ∣λTâˆŁâ‰€6×10−6\bigl|\lambda^{\cal T}\bigr| \leq 6\times 10^{-6}.Comment: 12 pages, 2 postscript figure
    • 

    corecore