17 research outputs found

    RNA biomarkers for sebaceous gland atrophy in skin. Listed are the 41 unique genes from the 42 probesets identified in the Training Set as shown in Figure 4 (Cxcl16 had 2 probesets).

    No full text
    <p>Fold change and ANOVA p values for compound treatments compared to their respective vehicle treatments, for both the Training and Test Sets, are included. The 26 probesets that are also significantly regulated in the Test Set are shown in bold. **  = ANOVA p<0.01; *  = ANOVA p<0.05; $ = ANOVA p<0.1.</p

    RNA biomarkers for sebaceous gland atrophy in skin.

    No full text
    <p>Shown are the 42 probesets, identified in the Training Set (Studies 1 and 2), that were regulated by skin-positive compound treatments (those that produced sebaceous gland atrophy) but not by the skin-negative compound treatments (the one that did <i>not</i> produce sebaceous gland atrophy). After excluding the absent probes (low intensity), these 42 probesets met the following cutoffs: 1.2 fold change and ANOVA p<0.01 between all 3 skin-positive compound treatments (red arrows) and their respective vehicle treatments, and ANOVA p>0.1 between the skin negative compound treatment (black arrow) and its respective vehicle treatment. The probesets for RIKEN genes were excluded. Plotted are the LogRatio values (+/− 4 fold fold scale) with magenta representing up-regulated probesets and cyan representing down-regulated probesets. Treatments from the independent Test Set (Study 4) are included for comparison but were not used to identify the 42 probesets.</p

    DGAT1 inhibitors with high lipophilicity induce sebaceous gland atrophy.

    No full text
    <p>Shown are hematoxylin and eosin stains of dorsal skin biopsies from DIO mice treated with either vehicle (A), Cpd1 (B), Cpd2 (C), or Cpd3 (D) for 14 days at doses indicated. Scoring refers to the histological adverse effect score as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0088908#pone-0088908-t001" target="_blank">Table 1</a>. Bar  = 50 µm. The corresponding sebaceous gland sizes (area) are plotted in (E) (and shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0088908#pone.0088908.s002" target="_blank">Table S1</a>).</p

    Immune-regulated genes are up-regulated, while lipid metabolism genes are down-regulated, with sebaceous gland atrophy.

    No full text
    <p>Box plots of probesets regulated by the skin-positive DGAT1 inhibitors (those that produce sebaceous gland atrophy) but not by the skin-negative compounds (those that do <i>not</i> produce sebaceous gland atrophy). Plotted are the LogIntensity values across the replicates in each group, and across the three studies. Ccl1 (A; chemokine (C-C motif) ligand 1) is involved in the recruitment of T cells in skin inflammation; and Scd3 (B; stearoyl-coenzyme A desaturase 3) is a sebaceous gland specific gene.</p

    Validation of the 42 probeset-composite score in an independent Test Set.

    No full text
    <p>The 42 probesets from the Training Set, shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0088908#pone-0088908-g005" target="_blank">Figure 5</a>, were used to generate a composite score across the treatments from the independent Test Set (Study 4). The p value between Cpd6 treatment (skin-positive) and Cpd18 treatment (skin-negative), in Study 4, is less than 0.0001. Expression data from this set of RNA biomarkers is predictive for sebaceous gland atrophy in mice following DGAT inhibitor treatment.</p

    Compound characteristics. Cpd1 is the same as DGAT1i in Lin, H et al (2013) [4], while Cpd2 is the same as Compound L in Liu, J et al (2013) [3].

    No full text
    <p>Plasma  =  plasma concentration; Skin  =  skin concentration; Skin/Plasma Ratio  =  skin to plasma concentration ratio; Fu Plasma  =  unbound fraction in plasma; mlogD  =  measured logD; clogD  =  calculated logD using ACD (measure of lipophilicity); mDGAT1 IC50  =  in vitro potency; Skin/IC50 =  skin concentration vs in vitro potency; Scoring  =  histological adverse effect score; clogD/mIC50 =  calculated logD vs in vitro potency; BLQ  =  below detection. Bold  =  compounds causing atrophy.</p

    Effects of DGAT1 inhibition on postprandial GLP-1.

    No full text
    <p>3-month-old lean C57BL/6N mice were p.o. dosed with DGAT1i at 3 mg/kg body weight and fasted overnight. The next morning, mice were p.o. dosed with mixed meals containing 2.6 (water:Ensure-plus = 1:1), 5.2, 28.9, 68.4, or 100% (corn oil:Ensure-plus = 0∶1, 1∶3, 2∶1, 1∶0 v/v) lipid load at 10 ml/kg body weight (0.74, 1.48, 3.15, 5.92, or 8.14 kcal/ml). At 1, 2, or 3h after meal challenge, plasma levels of (A–C) active GLP-1, (D–F) total GLP-1, and (H–J) blood glucose were measured. (G) 3-month-old lean C57BL/6N mice were p.o. dosed with 3 mg/kg DGAT1i or vehicle and fasted overnight. 18h after dosing, jejunal mucosa was harvested, and Gcg mRNA expression was measured by realtime PCR. Data are normalized against β-actin mRNA. N = 8. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 between groups.</p
    corecore