10 research outputs found

    Emission spectrum of hot HDO in the 380-2190 cm(-1) region

    Get PDF
    Fourier transform emission spectra were recorded using a mixture of H2O and D2O at a temperature of 1500 degreesC. The spectra were recorded in three overlapping sections and cover the wavenumber range 380-2190 cm(-1). A total of 22106 lines were measured, of which 60% are thought to belong to HDO. A total of 6430 FIDO transition,, are assigned, including the first transitions to the (040) vibrational state, with a term value of 5420.042 cm(-1). A total of 1536 new energy levels of HDO belonging to the (000), (010) (020), (030), and (040) stated are presented, significantly extending the degree of rotational excitation compared to previous studies. (C) 2001 Elsevier Science

    Water line intensities in the near-infrared and visible

    Get PDF
    Water is the single most important molecule for models of the earth's atmosphere but line parameters for water, particularly at shorter wavelengths, are difficult to measure reliably. We suggest that the most reliable way of generating water line parameters is to combine data obtained from a variety of sources, thereby separating line parameter determination into results for strong lines, for weak lines and for isotopically substituted water. Theoretical considerations which are addressed include line assignments and labeling of energy levels and the prospects of a full theoretical solution to the water vapor problem. Particular attention is paid to strong line absorption intensities in the near-infrared where recent studies have given significantly different results. The experimental data used to construct the ESA-WVR linelist (J. Mol. Spectrosc. 208 (2001) 32) is re-analyzed with a focus on effects due to pressure determination in the cell, subtraction of the baseline and parameterization of the line profiles. A preliminary re-analysis suggests that the line intensities given by the ESA-WVR study should be closer to those of Brown et al. (J. Mol. Spectrosc. 212 (2002) 57) used in the HITRAN. This shows the vital importance of validating the data for water by independent means. (C) 2003 Elsevier Ltd. All rights reserved

    Water vapour line assignments in the 9250-26 000 cm (-1) frequency range

    Get PDF
    Line parameters for water vapour in natural abundance have recently been determined for the 9250-13 000 cm(-1) region [M.-F. Wrienne, A. Jenouvrier, C. Hermans, A.C. Vandaele, M. Carleer, C. Clerbaux, P.-F. Coheur, R. Colin, S. Fally, M. Bach, J. Quant. Spectrosc. Radiat. Transfer 82 (2003) 99] and the 13 000-26 000 cm(-1) region [P.-F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Wrienne, C. Hermans, A.C. Vandaele, J. Quant. Spectrosc. Radial. Transfer 74 (2002) 493] using a high-resolution Fourier-transform spectrometer with a long-path absorption cell. These spectra are analysed using several techniques including variational line lists and assignments made. In total, over 15 000 lines were assigned to transitions involving more than 150 exited vibrational states of (H2O)-O-16. Twelve new vibrational band origins are determined and estimates for a further 16 are presented. (c) 2005 Elsevier Inc. All rights reserved

    High-accuracy an initio rotation-vibration transitions for water

    Get PDF
    The spectrum of water vapor is of fundamental importance for a variety of processes, including the absorption and retention of sunlight in Earth's atmosphere. Therefore, there has long been an urgent need for a robust and accurate predictive model for this spectrum. In our work on the high-resolution spectrum of water, we report first-principles calculations that approach experimental accuracy. To achieve this, we performed exceptionally large electronic structure calculations and considered a variety of effects, including quantum electrodynamics, which have routinely been neglected in studies of small many-electron molecules. The high accuracy of the resulting ab initio procedure is demonstrated for the main isotopomers of water

    The Role of Alliums and Their Sulfur and Selenium Constituents in Cancer Prevention

    No full text
    Garlic and its sulfur and selenium-containing components are widely known for their cancer preventive activities primarily in preclinical in vitro and in vivo model systems. Most of our common foods including garlic contain very low levels of selenium compounds relative to those of sulfur. Humans consume a substantial portion of their dietary sulfur and selenium in organic forms. Selenium-enriched foods such as garlic, broccoli and wheat are more effective chemopreventive agents than the corresponding regular dietary items. Naturally occurring and synthetic organoselenium compounds are superior cancer chemopreventive agents compared to their corresponding sulfur analogs. Mechanistic studies demonstrate that sulfur and selenium compounds are capable of cell growth inhibition, cell cycle arrest, induction of apoptosis, alterations of phase I and phase II enzyme activities, and histone deacetylase (HDAC) inhibition. The fact that organosulfur and organoselenium compounds can target multiple pathways suggests that these agents can be used directly as chemopreventive and/or therapeutic agents or in combination with other medicinal compounds. The effect of these agents on the aforementioned parameters varies depending on the dose and form (structure) and whether cells are normal or transformed. Whether the protective effects observed in animals and in cell cultures can be applicable to humans remain to be determined. Thus, studies using genomic, proteomic, and metabolomic techniques in well designed small-scale clinical trials are needed to unequivocally evaluate the potential of allium vegetable constituents on biomarkers of risk for specific cancers prior to entering into long-term expensive phase III clinical chemoprevention trials

    Allium sativum

    No full text
    corecore