2 research outputs found

    Pathophysiologic mechanisms of obesity- And chronic inflammation-related genes in etiology of polycystic ovary syndrome

    Get PDF
    Objective(s): One of the common heterogeneous reproductive disorders in women of childbearing age is polycystic ovary syndrome (PCOS). It is characterized by lack of fertility due to anovulatory cycles, hyperandrogenemia, polycystic ovaries, hyperinsulinemia, and obesity. Both reproductive anomalies and metabolic disorders are involved in PCOS pathology. Although the role of increased levels of androgens in initiation of PCOS is almost proven, mechanisms of PCOS pathophysiology are not clear. Here we discuss roles of altered metabolic conditions, obesity, and chronic inflammation in PCOS pathophysiology. Materials and Methods:: In this review, we attempted to identify genes related to obesity and chronic inflammation aspects of PCOS and their physiological functions to explain the pathways that are regulated by these genes and can be a prominent function in PCOS predisposition. For this purpose, published articles and reviews dealing with genetic evaluation of PCOS in women in peer-reviewed journals in PubMed and Google Scholar databases were included in this review. Results: Obesity and chronic inflammation are not prominent diagnostic features of PCOS, but they play an important role in exacerbating metabolic and hyperandrogenic states. ADIPOQ, FTO TGFß, and DENND1A as the main obesity- and chronic inflammation-related genes have roles in PCOS pathophysiology. Conclusion: It seems that genes related to obesity pathology in genomic research association, are related to metabolic aspects and body mass index in PCOS patients. Genomes have roles in chronic inflammation, followed by obesity, in the pathogenesis of PCO

    Differential expression of RFamide-related peptide, a mammalian gonadotrophin-inhibitory hormone orthologue, and kisspeptin in the hypothalamus of Abadeh ecotype does during breeding and anoestrous seasons

    No full text
    Gonadotrophin-inhibitory hormone (GnIH) is a novel hypothalamic neuropeptide that was discovered in birds as an inhibitory factor for gonadotrophin release. RFamide-related peptide (RFRP) is a mammalian GnIH orthologue that inhibits gonadotrophin synthesis and release in mammals through actions on gonadotrophin-releasing hormone (GnRH) neurones and gonadotrophs, mediated via the GnIH receptor (GnIH-R), GPR147. On the other hand, hypothalamic kisspeptin provokes the release of GnRH from the hypothalamus. The present study aimed to compare the expression of RFRP in the dorsomedial hypothalamus and paraventricular nucleus (DMH/PVN) and that of kisspeptin in the arcuate nucleus (ARC) of the female goat hypothalamus during anoestrous and breeding seasons. Mature female Abadeh does were used during anoestrus, as well as the follicular and luteal phases of the cycle. The number of RFRP-immunoreactive (-IR) neurones in the follicular phase was lower than in the luteal and anoestrous stages. Irrespective of the ovarian stage, the number of RFRP-IR neurones in the rostral and middle regions of the DMH/PVN was higher than in the caudal region. By contrast, the number of kisspeptin-IR neurones in the follicular stage was greater than in the luteal stage and during the anoestrous stage. Irrespective of the stage of the ovarian cycle, the number of kisspeptin-IR neurones in the caudal region of the ARC was greater than in the middle and rostral regions. In conclusion, RFRP-IR cells were more abundant in the rostral region of the DMH/PVN nuclei of the hypothalamus, with a greater number being found during the luteal and anoestrous stages compared to the follicular stage. On the other hand, kisspeptin-IR neurones were more abundant in the caudal part of the ARC, with a greater number recorded in the follicular stage compared to the luteal and anoestrous stages
    corecore