179 research outputs found

    Thermospermine suppresses auxin-inducible xylem differentiation in Arabidopsis thaliana

    Get PDF
    Thermospermine, a structural isomer of spermine, is synthesized by a thermospermine synthase designated ACAULIS5 (ACL5). Thermospermine-deficient acl5 mutant of Arabidopsis thaliana shows severe dwarfism and excessive xylem differentiation. By screening for compounds that affect xylem differentiation in the acl5 mutant, we identified auxin analogs that remarkably enhanced xylem vessel differentiation in the acl5 mutant but not in the wild type. The xylem-inducing effect of auxin analogs was clearly suppressed by thermospermine, indicating that auxin-inducible xylem differentiation is normally limited by thermospermine. Here, we further characterized xylem-inducing effect of auxin analogs in various organs. Auxin analogs promoted protoxylem differentiation in roots and cotyledons in the acl5 mutant. Our results indicate that the opposite action between thermospermine and auxin in xylem differentiation is common in different organs and also suggest that thermospermine might be required for the suppression of protoxylem differentiation

    Sulfonamides identified as plant immune-priming compounds in high-throughput chemical screening increase disease resistance in Arabidopsis thaliana

    Get PDF
    Plant activators are agrochemicals that protect crops from diseases by activating the plant immune system. To isolate lead compounds for use as practical plant activators, we screened two different chemical libraries composed of various bioactive substances by using an established screening procedure that can selectively identify immune-priming compounds. We identified and characterized a group of sulfonamide compounds – sulfameter, sulfamethoxypyridazine, sulfabenzamide, and sulfachloropyridazine – among the various isolated candidate molecules. These sulfonamide compounds enhanced the avirulent Pseudomonas-induced cell death of Arabidopsis suspension cell cultures and increased disease resistance in Arabidopsis plants against both avirulent and virulent strains of the bacterium. These compounds did not prevent the growth of pathogenic bacteria in minimal liquid media at 200 μM. They also did not induce the expression of defense-related genes in Arabidopsis seedlings, at least not at 24 and 48 h after treatment, suggesting that they do not act as salicylic acid analogs. In addition, although sulfonamides are known to be folate biosynthesis inhibitors, the application of folate did not restore the potentiation effects of the sulfonamides on pathogen-induced cell death. Our data suggest that sulfonamides potentiate Arabidopsis disease resistance by their novel chemical properties

    A chemical biology approach reveals an opposite action between thermospermine and auxin in xylem development in Arabidopsis thaliana

    Get PDF
    Thermospermine, a structural isomer of spermine, is produced through the action of ACAULIS5 (ACL5) and suppresses xylem differentiation in Arabidopsis thaliana. To elucidate the molecular basis of the function of thermospermine, we screened chemical libraries for compounds that can modulate xylem differentiation in the acl5 mutant, which is deficient in thermospermine and shows a severe dwarf phenotype associated with excessive proliferation of xylem vessels. We found that the isooctyl ester of a synthetic auxin, 2,4-D, remarkably enhanced xylem vessel differentiation in acl5 seedlings. 2,4-D, 2,4-D analogs and IAA analogs, including 4-chloro IAA (4-Cl-IAA) and IAA ethyl ester, also enhanced xylem vessel formation, while IAA alone had little or no obvious effect on xylem differentiation. These effects of auxin analogs were observed only in the acl5 mutant but not in the wild type, and were suppressed by the anti-auxin, p-chlorophenoxyisobutyric acid (PCIB) and alpha-(phenyl ethyl-2-one)-IAA (PEO-IAA), and also by thermospermine. Furthermore, the suppressor of acaulis51-d (sac51-d) mutation, which causes SAC51 overexpression in the absence of thermospermine and suppresses the dwarf phenotype of acl5, also suppressed the effect of auxin analogs in acl5. These results suggest that the auxin signaling that promotes xylem differentiation is normally limited by SAC51-mediated thermospermine signaling but can be continually stimulated by exogenous auxin analogs in the absence of thermospermine. The opposite action between thermospermine and auxin may fine-tune the timing and spatial pattern of xylem differentiation

    Comparative transient expression analyses on two conserved effectors of Colletotrichum orbiculare reveal their distinct cell death‐inducing activities between Nicotiana benthamiana and melon

    Get PDF
    Colletotrichum orbiculare infects cucurbits, such as cucumber and melon (Cucumis melo), as well as the model Solanaceae plant Nicotiana benthamiana, by secreting an arsenal of effectors that suppress the immunity of these distinct plants. Two conserved effectors of C. orbiculare, called NLP1 and NIS1, induce cell death responses in N. benthamiana, but it is unclear whether they exhibit the same activity in Cucurbitaceae plants. In this study, we established a new Agrobacterium-mediated transient expression system to investigate the cell death-inducing activity of NLP1 and NIS1 in melon. NLP1 strongly induced cell death in melon but, in contrast to the effects seen in N. benthamiana, mutations either in the heptapeptide motif or in the putative glycosylinositol phosphorylceramide-binding site did not cancel its cell death-inducing activity in melon. Furthermore, NLP1 lacking the signal peptide caused cell death in melon but not in N. benthamiana. Study of the transient expression of NIS1 also revealed that, unlike in N. benthamiana, NIS1 did not induce cell death in melon. In contrast, NIS1 suppressed flg22-induced reactive oxygen species generation in melon, as seen in N. benthamiana. These findings indicate distinct cell death-inducing activities of NLP1 and NIS1 in these two plant species that C. orbiculare infects

    A full-length enriched cDNA library and expressed sequence tag analysis of the parasitic weed, Striga hermonthica

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The obligate parasitic plant witchweed (<it>Striga hermonthica</it>) infects major cereal crops such as sorghum, maize, and millet, and is the most devastating weed pest in Africa. An understanding of the nature of its parasitism would contribute to the development of more sophisticated management methods. However, the molecular and genomic resources currently available for the study of <it>S. hermonthica </it>are limited.</p> <p>Results</p> <p>We constructed a full-length enriched cDNA library of <it>S. hermonthica</it>, sequenced 37,710 clones from the library, and obtained 67,814 expressed sequence tag (EST) sequences. The ESTs were assembled into 17,317 unigenes that included 10,319 contigs and 6,818 singletons. The <it>S. hermonthica </it>unigene dataset was subjected to a comparative analysis with other plant genomes or ESTs. Approximately 80% of the unigenes have homologs in other dicotyledonous plants including <it>Arabidopsis</it>, poplar, and grape. We found that 589 unigenes are conserved in the hemiparasitic <it>Triphysaria </it>species but not in other plant species. These are good candidates for genes specifically involved in plant parasitism. Furthermore, we found 1,445 putative simple sequence repeats (SSRs) in the <it>S. hermonthica </it>unigene dataset. We tested 64 pairs of PCR primers flanking the SSRs to develop genetic markers for the detection of polymorphisms. Most primer sets amplified polymorphicbands from individual plants collected at a single location, indicating high genetic diversity in <it>S. hermonthica</it>. We selected 10 primer pairs to analyze <it>S. hermonthica </it>harvested in the field from different host species and geographic locations. A clustering analysis suggests that genetic distances are not correlated with host specificity.</p> <p>Conclusions</p> <p>Our data provide the first extensive set of molecular resources for studying <it>S. hermonthica</it>, and include EST sequences, a comparative analysis with other plant genomes, and useful genetic markers. All the data are stored in a web-based database and freely available. These resources will be useful for genome annotation, gene discovery, functional analysis, molecular breeding, epidemiological studies, and studies of plant evolution.</p

    Structural and functional analysis of SGT1–HSP90 core complex required for innate immunity in plants

    Get PDF
    SGT1 (Suppressor of G2 allele of skp1), a co-chaperone of HSP90 (Heat-shock protein 90), is required for innate immunity in plants and animals. Unveiling the cross talks between SGT1 and other co-chaperones such as p23, AHA1 (Activator of HSP90 ATPase 1) or RAR1 (Required for Mla12 resistance) is an important step towards understanding the HSP90 machinery. Nuclear magnetic resonance spectroscopy and mutational analyses of HSP90 revealed the nature of its binding with the CS domain of SGT1. Although CS is structurally similar to p23, these domains were found to non-competitively bind to various regions of HSP90; yet, unexpectedly, full-length SGT1 could displace p23 from HSP90. RAR1 partly shares the same binding site with HSP90 as the CS domain, whereas AHA1 does not. This analysis allowed us to build a structural model of the HSP90–SGT1 complex and to obtain a compensatory mutant pair between both partners that is able to restore virus resistance in vivo through Rx (Resistance to potato virus X) immune sensor stabilization

    Complete Genome Sequence of Pseudomonas amygdali pv. tabaci Strain 6605, a Causal Agent of Tobacco Wildfire Disease

    Get PDF
    Pseudomonas amygdali pv. tabaci strain 6605 is the bacterial pathogen causing tobacco wildfire disease that has been used as a model for elucidating virulence mechanisms. Here, we present the complete genome sequence of P. amygdali pv. tabaci 6605 as a circular chromosome from reads using a PacBio sequencer

    The phagocytosis oxidase/Bem1p domain-containing protein PB1CP negatively regulates the NADPH oxidase RBOHD in plant immunity

    Full text link
    Perception of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors activates RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) through direct phosphorylation by BOTRYTIS-INDUCED KINASE 1 (BIK1) and induces the production of reactive oxygen species (ROS). RBOHD activity must be tightly controlled to avoid the detrimental effects of ROS, but little is known about RBOHD downregulation. To understand the regulation of RBOHD, we used co-immunoprecipitation of RBOHD with mass spectrometry analysis and identified PHAGOCYTOSIS OXIDASE/BEM1P (PB1) DOMAIN-CONTAINING PROTEIN (PB1CP). PB1CP negatively regulates RBOHD and the resistance against the fungal pathogen Colletotrichum higginsianum. PB1CP competes with BIK1 for binding to RBOHD in vitro. Furthermore, PAMP treatment enhances the PB1CP-RBOHD interaction, thereby leading to the dissociation of phosphorylated BIK1 from RBOHD in vivo. PB1CP localizes at the cell periphery and PAMP treatment induces relocalization of PB1CP and RBOHD to the same small endomembrane compartments. Additionally, overexpression of PB1CP in Arabidopsis leads to a reduction in the abundance of RBOHD protein, suggesting the possible involvement of PB1CP in RBOHD endocytosis. We found PB1CP, a novel negative regulator of RBOHD, and revealed its possible regulatory mechanisms involving the removal of phosphorylated BIK1 from RBOHD and the promotion of RBOHD endocytosis
    corecore