37 research outputs found

    Early Science Result from the Japanese Virtual Observatory: AGN and Galaxy Clustering at z = 0.3 to 3.0

    Full text link
    We present the result of projected cross correlation analysis of AGNs and galaxies at redshifts from 0.3 to 3.0. The Japanese Virtual Observatory (JVO) was used to obtain the Subaru Suprime-Cam images and UKIDSS catalog data around AGNs. We investigated 1,809 AGNs, which is about ten times larger a sample than that used in previous studies on AGN-galaxy clustering at redshifts larger than 0.6. 90% of the AGN samples are optically-selected AGN from the SDSS and 2dF catalogs. The galaxy samples at low redshift includes many redder objects from UKIDSS survey, while at higher redshift they are mainly blue galaxies from Suprime-Cam. We found significant excess of galaxies around the AGNs at redshifts from 0.3 to 1.8. For the low redshift samples (z<0.9z<0.9), we obtained correlation length of r0=r_{0} = 5--6 h−1h^{-1}Mpc (Îł=1.8\gamma = 1.8), which indicates that the AGNs at this redshift range reside in a similar environment around typical local galaxies. We also found that AGNs at higher redshift ranges reside in a denser environment than lower redshift AGNs; For z=1.3∌1.8z=1.3 \sim 1.8 AGNs, the cross correlation length was measured as 11−3+6^{+6}_{-3} h−1h^{-1}Mpc (Îł=1.8\gamma=1.8). Considering that our galaxies sample is based on optical observations with Suprime-Cam at the redshift range, it is expected that blue star-forming galaxies comprise the majority of objects that are observed to be clustered around the AGNs. It is successfully demonstrated that the use of the archive through the Virtual Observatory system can provide a powerful tool for investigating the small scale environment of the intermediate redshift AGNs.Comment: accepted to PASJ, 36 pages, 21 figures, this is an accepted versio

    A Comprehensive Study of Short Bursts from SGR 1806-20 and SGR 1900+14 Detected by HETE-2

    Get PDF
    We present the results of temporal and spectral studies of the short burst (less than a few hundred milliseconds) from the soft gamma repeaters (SGRs) 1806-20 and 1900+14 using the HETE-2 samples. In five years from 2001 to 2005, HETE-2 detected 50 bursts which were localized to SGR 1806-20 and 5 bursts which were localized to SGR 1900+14. Especially SGR 1806-20 was active in 2004, and HETE-2 localized 33 bursts in that year. The cumulative number-intensity distribution of SGR 1806-20 in 2004 is well described by a power law model with an index of -1.1+/-0.6. It is consistent with previous studies but burst data taken in other years clearly give a steeper distribution. This may suggest that more energetic bursts could occur more frequently in periods of greater activity. A power law cumulative number-intensity distribution is also known for earthquakes and solar flares. It may imply analogous triggering mechanisms. Although spectral evolution during bursts with a time scale of > 20 ms is not common in the HETE-2 sample, spectral softening due to the very rapid (< a few milliseconds) energy reinjection and cooling may not be excluded. The spectra of all short bursts are well reproduced by a two blackbody function (2BB) with temperatures ~4 and ~11 keV. From the timing analysis of the SGR 1806-20 data, a time lag of 2.2+/-0.4 ms is found between the 30-100 keV and 2-10 keV radiation bands. This may imply (1) a very rapid spectral softening and energy reinjection, (2) diffused (elongated) emission plasma along the magnetic field lines in pseudo equilibrium with multi-temperatures, or (3) a separate (located at < 700 km) emission region of softer component (say, ~4 keV) which could be reprocessed X-rays by higher energy (> 11 keV) photons from an emission region near the stellar surface.Comment: 50 pages, 14 figures, accepted for publication in PAS

    IVOA Recommendation: IVOA Astronomical Data Query Language Version 2.00

    Full text link
    This document describes the Astronomical Data Query Language (ADQL). ADQL has been developed based on SQL92. This document describes the subset of the SQL grammar supported by ADQL. Special restrictions and extensions to SQL92 have been defined in order to support generic and astronomy specific operations
    corecore