16 research outputs found

    Reproducible Arterial Denudation Injury by Infrarenal Abdominal Aortic Clamping in a Murine Model.

    No full text
    Percutaneous vascular interventions uniformly result in arterial denudation injuries that subsequently lead to thrombosis and restenosis. These complications can be attributed to impairments in re-endothelialization within the wound margins. Yet, the cellular and molecular mechanisms of re-endothelialization remain to be defined. While several animal models to study re-endothelialization after arterial denudation are available, few are performed in the mouse because of surgical limitations. This undermines the opportunity to exploit transgenic mouse lines and investigate the contribution of specific genes to the process of re-endothelialization. Here, we present a step-by-step protocol for creating a highly reproducible murine model of arterial denudation injury in the infrarenal abdominal aorta using external vascular clamping. Immunocytochemical staining of injured aortas for fibrinogen and β-catenin demonstrate the exposure of a pro-thrombotic surface and the border of intact endothelium, respectively. The method presented here has the advantages of speed, excellent overall survival rate, and relative technical ease, creating a uniquely practical tool for imposing arterial denudation injury in transgenic mouse models. Using this method, investigators may elucidate the mechanisms of re-endothelialization under normal or pathological conditions

    A multi-step transcriptional cascade underlies vascular regeneration in vivo.

    No full text
    The molecular mechanisms underlying vascular regeneration and repair are largely unknown. To gain insight into this process, we developed a method of intima denudation, characterized the progression of endothelial healing, and performed transcriptome analysis over time. Next-generation RNA sequencing (RNAseq) provided a quantitative and unbiased gene expression profile during in vivo regeneration following denudation injury. Our data indicate that shortly after injury, cells immediately adjacent to the wound mount a robust and rapid response with upregulation of genes like Jun, Fos, Myc, as well as cell adhesion genes. This was quickly followed by a wave of proliferative genes. After completion of endothelial healing a vigorous array of extracellular matrix transcripts were upregulated. Gene ontology enrichment and protein network analysis were used to identify transcriptional profiles over time. Further data mining revealed four distinct stages of regeneration: shock, proliferation, acclimation, and maturation. The transcriptional signature of those stages provides insight into the regenerative machinery responsible for arterial repair under normal physiologic conditions
    corecore