367 research outputs found

    Enhanced clickability of doubly sterically-hindered aryl azides

    Get PDF
    Steric character is one of the most fundamental factors to determine the reactivity of the substrate in organic synthesis. In bimolecular reaction, the sterically-bulky group situated close to the reactive center generally prevents the approach of the reaction partner retarding the bond formation. This report describes, to the contrary, significantly enhanced reactivity of 2,6-disubstituted phenyl azides observed in catalyst-free 1,3-dipolar cycloaddition with alkynes, unexpectedly reacting faster than unsubstituted phenyl azide and even more faster than unhindered alkyl azide, despite the steric hindrance adjacent to the reactive azido group. Experimental and computational studies have indicated that the steric hindrance eliciting the inhibition of resonance between azido group and the aromatic ring is the primary cause of this apparently-paradoxical phenomenon. This is the first type of steric acceleration, indicating a possibility of designing a highly reactive functional group by strategically locating it in the sterically-congested environment

    Electroplated Fe?Ni Films Prepared From Deep Eutectic Solvents

    Get PDF
    Fe-Ni alloy films were prepared by electroplating in a plating bath containing a choline chloride and ethylene glycol-based deep eutectic solvent (DES). The Fe content of the electroplated films was found to vary from 0 at.% to 100 at.% and was dependent on the amount of Fe reagent in the plating bath. The composition of the electroplated films could be controlled easily by changing the composition of the bath. We observed bcc or fcc Fe-Ni crystalline phase in the electroplated films by X-ray diffraction and confirmed that magnetically soft Fe-Ni alloy films could be obtained from the DES-based bath. The current efficiency for the plating process was as high as >88% over a wide range of the Fe reagent concentrations. Therefore, we conclude that the DES is an attractive solvent for preparing the Fe-Ni alloy films

    Magnetic Fe-Co films electroplated in a deep-eutectic-solvent-based plating bath

    Get PDF
    We fabricated Fe-Co films from a deep eutectic solvent (DES)-based plating bath and investigated magnetic properties of the plated films. The plating baths were obtained by stirring the mixture of choline chloride, ethylene glycol, FeCl2・4H2O, and CoCl2・6H2O. The composition of the plated films depended on the amount of FeCl2・4H2O in the plating bath, and Fe content of the films was varied from 0 to 100 at. %. Depending on the Fe content, the saturation magnetization and the coercivity of the films varied. The Fe76Co24 film shows high saturation magnetization and smooth surface, and the change in the saturation magnetization shows good agreement with the expected change by the Slater-Pauling curve. High current efficiency (>90%) could be obtained in the wide film composition. From these results, we concluded that the DES-based plating bath is one of effective baths for the Fe-Co films with high current efficiency

    Reply to the Editor

    Get PDF

    Electroplated Fe films prepared from a deep eutectic solvent

    Get PDF
    Electroplating of Fe films was carried out from choline chloride-ethylene glycol types of DES (Deep Eutectic Solvent). We investigated magnetic properties of the plated Fe films and evaluated the productivity for the electroplating process. Consequently, we found that surface morphology and current efficiency of the plated films were affected by the bath temperature. We obtained the Fe films with relatively smooth surface and high current efficiency in the bath temperature range from 70 to 110°C. The deposition rate for our process depended on the current density, and we obtained high deposition rate value of approximately 120μm/h. We also obtained high current efficiency values of approximately 90% in the wide range of plating time. These results indicate that the DES-based bath has industrial advantages for mass-producing Fe films. Therefore, we conclude that the DES-based bath is an attractive plating bath for Fe films

    Inhibition of inducible nitric oxide synthase ameliorates rat lung allograft rejection

    Get PDF
    AbstractRecently, the inducible isoform of nitric oxide synthase has been shown to be an important immunomodulation molecule in allograft rejection. We have observed the production of nitric oxide during rejection and the effect of nitric oxide synthase inhibition on allograft rejection in a rat lung transplant model. Rat left lung allotransplants were performed in two strain combinations: brown Norway–to–F344 (major histocompatibility complex incompatible); and Lewis-to-F344 (minor loci incompatible) as severe and mild rejection models respectively. Syngeneic F344-to-F344 transplants were performed as a negative control. Nitric oxide production during rejection was determined by measuring the recipient's serum nitrite/nitrate levels as a stable end product of nitric oxide. The progression of rejection was evaluated radiographically and the grade of rejection was determined histologically. After operation, recipients of allotransplantation were randomly divided into two groups and received either aminoguanidine (200 mg/kg, intraperitoneal every 6 hours), a potent inducible nitric oxide synthase inhibitor, or normal saline treatment. The levels of serum nitrite and nitrate in recipients increased in the early phase of rejection in both allotransplant combinations. However, in the terminal phase of rejection, the serum nitrite/nitrate level decreased significantly compared with the peak level in the brown Norway–to–F344 recipients. The serum nitrite/nitrate levels in the syngeneic transplant recipients were normal during the entire observation period. In aminoguanidine-treated animals, serum nitrite/nitrate levels remained normal in both allograft combinations. Significant suppression of rejection in aminoguanidine-treated recipients was observed histologically and radiographically in comparison with untreated recipients in the brown Norway–to–F344 combination. In the Lewis-to-F344 combination, aminoguanidine treatment significantly ameliorated histologic rejection but did not affect radiologic appearance. We therefore conclude nitric oxide is produced during early allograft rejection and may prove to be a marker and mediator of early rejection. The inhibition of inducible nitric oxide synthase results in significant reduction in rat lung allograft rejection. (J THORAC CARDIOVASC SURG 1995;110:1449-60
    • …
    corecore