448 research outputs found

    Identifications and SEDs of the detected sources from the AKARI Deep Field South

    Full text link
    In order to find counterparts of the detected objects in the AKARI Deep Field South (ADFS) in all available wavelengths, we searched public databases (NED, SIMBAD and others). Checking 500 sources brighter than 0.0482 Jy in the AKARI Wide-S band, we found 114 sources with possible counterparts, among which 78 were known galaxies. We present these sources as well as our first attempt to construct spectral energy distributions (SEDs) for the most secure and most interesting sources among them, taking into account all the known data together with the AKARI measurements in four bands.Comment: 4 pages, 10 figures, To appear in: the proceedings of the conference "AKARI, a light to illuminate the misty Universe", February 16-19 2009, Toky

    Infrared Spectroscopy of CO Ro-vibrational Absorption Lines toward the Obscured AGN IRAS 08572+3915

    Full text link
    We present high-resolution spectroscopy of gaseous CO absorption in the fundamental ro-vibrational band toward the heavily obscured active galactic nucleus (AGN) IRAS 08572+3915. We have detected absorption lines up to highly excited rotational levels (J<=17). The velocity profiles reveal three distinct components, the strongest and broadest (delta_v > 200 km s-1) of which is due to blueshifted (-160 km s-1) gas at a temperature of ~ 270 K absorbing at velocities as high as -400 km s-1. A much weaker but even warmer (~ 700 K) component, which is highly redshifted (+100 km s-1), is also detected, in addition to a cold (~ 20 K) component centered at the systemic velocity of the galaxy. On the assumption of local thermodynamic equilibrium, the column density of CO in the 270 K component is NCO ~ 4.5 x 10^18 cm-2, which in fully molecular gas corresponds to a H2 column density of NH2 ~ 2.5 x 10^22 cm-2. The thermal excitation of CO up to the observed high rotational levels requires a density greater than nc(H2) > 2 x 10^7 cm-3, implying that the thickness of the warm absorbing layer is extremely small (delta_d < 4 x 10-2 pc) even if it is highly clumped. The large column densities and high radial velocities associated with these warm components, as well as their temperatures, indicate that they originate in molecular clouds near the central engine of the AGN.Comment: 13 pages, 7 figures, accepted for publication in PASJ (Vol.65 No.1 2013/02/25

    Monolithic Ge:Ga Detector Development for SAFARI

    Full text link
    We describe the current status and the prospect for the development of monolithic Ge:Ga array detector for SAFARI. Our goal is to develop a 64x64 array for the 45 -- 110 um band, on the basis of existing technologies to make 3x20 monolithic arrays for the AKARI satellite. For the AKARI detector we have achieved a responsivity of 10 A/W and a read-out noise limited NEP (noise equivalent power) of 10^-17 W/rHz. We plan to develop the detector for SAFARI with technical improvements; significantly reduced read-out noise with newly developed cold read-out electronics, mitigated spectral fringes as well as optical cross-talks with a multi-layer antireflection coat. Since most of the elemental technologies to fabricate the detector are flight-proven, high technical readiness levels (TRLs) should be achieved for fabricating the detector with the above mentioned technical demonstrations. We demonstrate some of these elemental technologies showing results of measurements for test coatings and prototype arrays.Comment: To appear in Proc. Workshop "The Space Infrared Telescope for Cosmology & Astrophysics: Revealing the Origins of Planets and Galaxies". Eds. A.M. Heras, B. Swinyard, K. Isaak, and J.R. Goicoeche

    Finite spin-glass transition of the ±J\pm J XY model in three dimensions

    Full text link
    A three-dimensional ±J\pm J XY spin-glass model is investigated by a nonequilibrium relaxation method. We have introduced a new criterion for the finite-time scaling analysis. A transition temperature is obtained by a crossing point of obtained data. The scaling analysis on the relaxation functions of the spin-glass susceptibility and the chiral-glass susceptibility shows that both transitions occur simultaneously. The result is checked by relaxation functions of the Binder parameters and the glass correlation lengths of the spin and the chirality. Every result is consistent if we consider that the transition is driven by the spin degrees of freedom.Comment: 11 pages, 8 figures, incorrect arguments are delete

    Density Matrix Renormalization Group Study of the Disorder Line in the Quantum ANNNI Model

    Full text link
    We apply Density Matrix Renormalization Group methods to study the phase diagram of the quantum ANNNI model in the region of low frustration where the ferromagnetic coupling is larger than the next-nearest-neighbor antiferromagnetic one. By Finite Size Scaling on lattices with up to 80 sites we locate precisely the transition line from the ferromagnetic phase to a paramagnetic phase without spatial modulation. We then measure and analyze the spin-spin correlation function in order to determine the disorder transition line where a modulation appears. We give strong numerical support to the conjecture that the Peschel-Emery one-dimensional line actually coincides with the disorder line. We also show that the critical exponent governing the vanishing of the modulation parameter at the disorder transition is βq=1/2\beta_q = 1/2.Comment: 4 pages, 5 eps figure

    AKARI Detections of Hot Dust in Luminous Infrared Galaxies

    Full text link
    We present a new sample of active galactic nuclei (AGNs) identified using the catalog of the AKARI Mid-infrared(MIR) All-Sky Survey. Our MIR search has an advantage in detecting AGNs that are obscured at optical wavelengths due to extinction. We first selected AKARI 9micron excess sources with F(9micron)/F(K_S)>2 where K_S magnitudes were taken from the Two Micron All Sky Survey. We then obtained follow-up near-infrared spectroscopy with the AKARI/IRC, to confirm that the excess is caused by hot dust. We also obtained optical spectroscopy with the Kast Double Spectrograph on the Shane 3-m telescope at Lick Observatory. On the basis of on these observations, we detected hot dust with a characteristic temperature of ~500K in two luminous infrared galaxies. The hot dust is suspected to be associated with AGNs that exhibit their nonstellar activity not in the optical, but in the near- and mid-infrared bands, i.e., they harbor buried AGNs. The host galaxy stellar masses of 4-6 x 10^9 M_sun are small compared with the hosts in optically-selected AGN populations. These objects were missed by previous surveys, demonstrating the power of the AKARI MIR All-Sky Survey to widen AGN searches to include more heavily obscured objects. The existence of multiple dusty star clusters with massive stars cannot be completely ruled out with our current data.Comment: 15 pages, 4 figures, to be published in Astronomy & Astrophysic
    corecore