2 research outputs found

    DataSheet_2_Metabolic-related gene pairs signature analysis identifies ABCA1 expression levels on tumor-associated macrophages as a prognostic biomarker in primary IDHWT glioblastoma.docx

    No full text
    BackgroundAlthough isocitrate dehydrogenase (IDH) mutation serves as a prognostic signature for routine clinical management of glioma, nearly 90% of glioblastomas (GBM) patients have a wild-type IDH genotype (IDHWT) and lack reliable signatures to identify distinct entities.MethodsTo develop a robust prognostic signature for IDHWT GBM patients, we retrospectively analyzed 4 public datasets of 377 primary frozen tumor tissue transcriptome profiling and clinical follow-up data. Samples were divided into a training dataset (204 samples) and a validation (173 samples) dataset. A prognostic signature consisting of 21 metabolism-related gene pairs (MRGPs) was developed based on the relative ranking of single-sample gene expression levels. GSEA and immune subtype analyses were performed to reveal differences in biological processes between MRGP risk groups. The single-cell RNA-seq dataset was used to examine the expression distribution of each MRG constituting the signature in tumor tissue subsets. Finally, the association of MRGs with tumor progression was biologically validated in orthotopic GBM models.ResultsThe metabolic signature remained an independent prognostic factor (hazard ratio, 5.71 [3.542-9.218], P ConclusionsThe metabolic signature is expected to be used in the individualized management of primary IDHWT GBM patients.</p

    Epichlorohydrin-Cross-linked Hydroxyethyl Cellulose/Soy Protein Isolate Composite Films as Biocompatible and Biodegradable Implants for Tissue Engineering

    No full text
    A series of epichlorohydrin-cross-linked hydroxyethyl cellulose/soy protein isolate composite films (EHSF) was fabricated from hydroxyethyl cellulose (HEC) and soy protein isolate (SPI) using a process involving blending, cross-linking, solution casting, and evaporation. The films were characterized with FTIR, solid-state <sup>13</sup>C NMR, UV–vis spectroscopy, and mechanical testing. The results indicated that cross-linking interactions occurred in the inter- and intramolecules of HEC and SPI during the fabrication process. The EHSF films exhibited homogeneous structure and relative high light transmittance, indicating there was a certain degree of miscibility between HEC and SPI. The EHSF films exhibited a relative high mechanical strength in humid state and an adjustable water uptake ratio and moisture absorption ratio. Cytocompatibility, hemocompatibility and biodegradability were evaluated by a series of in vitro and in vivo experiments. These results showed that the EHSF films had good biocompatibility, hemocompatibility, and anticoagulant effect. Furthermore, EHSF films could be degraded in vitro and in vivo, and the degradation rate could be controlled by adjusting the SPI content. Hence, EHSF films might have a great potential for use in the biomedical field
    corecore