41 research outputs found

    Atomically Thin Al2O3 Films for Tunnel Junctions

    Get PDF
    Metal-insulator-metal tunnel junctions are common throughout the microelectronics industry. The industry standard AlOx tunnel barrier, formed through oxygen diffusion into an Al wetting layer, is plagued by internal defects and pinholes which prevent the realization of atomically thin barriers demanded for enhanced quantum coherence. In this work, we employ in situ scanning tunneling spectroscopy along with molecular-dynamics simulations to understand and control the growth of atomically thin Al2O3 tunnel barriers using atomic-layer deposition. We find that a carefully tuned initial H2O pulse hydroxylated the Al surface and enabled the creation of an atomically thin Al2O3 tunnel barrier with a high-quality M−I interface and a significantly enhanced barrier height compared to thermal AlOx. These properties, corroborated by fabricated Josephson junctions, show that atomic-layer deposition Al2O3 is a dense, leak-free tunnel barrier with a low defect density which can be a key component for the next generation of metal-insulator-metal tunnel junctions

    Atomically Thin Al2 O3 Films for Tunnel Junctions

    Get PDF
    Metal-insulator-metal tunnel junctions are common throughout the microelectronics industry. The industry standard AlOx tunnel barrier, formed through oxygen diffusion into an Al wetting layer, is plagued by internal defects and pinholes which prevent the realization of atomically thin barriers demanded for enhanced quantum coherence. In this work, we employ in situ scanning tunneling spectroscopy along with molecular-dynamics simulations to understand and control the growth of atomically thin Al2O3 tunnel barriers using atomic-layer deposition. We find that a carefully tuned initial H2O pulse hydroxylated the Al surface and enabled the creation of an atomically thin Al2O3 tunnel barrier with a high-quality M-I interface and a significantly enhanced barrier height compared to thermal AlOx. These properties, corroborated by fabricated Josephson junctions, show that atomic-layer deposition Al2O3 is a dense, leak-free tunnel barrier with a low defect density which can be a key component for the next generation of metal-insulator-metal tunnel junctions

    Spirometra

    Get PDF
    Sparganosis is a zoonotic disease caused by the spargana of Spirometra, and snake is one of the important intermediate hosts of spargana. In some areas of China, snake is regarded as popular delicious food, and such a food habit potentially increases the prevalence of human sparganosis. To understand the prevalence of Spirometra in snakes in food markets, we conducted a study in two representative cities (Guangzhou and Shenzhen), during January–August 2013. A total of 456 snakes of 13 species were examined and 251 individuals of 10 species were infected by Spirometra, accounting for 55.0% of the total samples. The worm burden per infected snake ranged from 1 to 213, and the prevalence in the 13 species was 0∌96.2%. More than half (58.1%) of the spargana were located in muscular tissue, 25.6% in subcutaneous tissue, and 16.3% in coelomic cavity. The results indicated that Spirometra severely infected snakes in food markets in Guangzhou and Shenzhen, implying that eating snakes has great health risk and improper cooking methods may increase the risk of Spirometra infection in humans in China. Additional steps should be considered by the governments and public health agencies to prevent the risk of snake-associated Spirometra infections in humans

    Observations on carapace color change in the juvenile big-headed turtle (Platysternon megacephalum)

    No full text
    The carapace color of newborn big-headed turtles (Platysternon megacephalum) is polymorphic and usually consists of two phenotypes: yellowish brown and olive green. As the turtles grew, over the first year of life, its carapace gradually turned from yellowish brown to chestnut brown, or from olive green to dark brown, depending on the phenotype. Meanwhile, the turtle’s plastron remained an orange and black pattern and did not change much. In this study, we primarily used HE staining to observe the carapace color change with age in big-headed turtle juveniles. We took the carapace marginal scute tissues twice from the same turtles before and after the carapace color change. Histological observations show that in the marginal scutes of the four tested turtles with different carapace color phenotypes, melanin granules are all concentrated in the dermal layer underneath the dorsal corneous layer, but rarely on the ventral side. Melanin deposits in the dorsal corneous layer were found to increase as the corneous layers thickened, while the melanin deposits in the ventral corneous layer did not change significantly. However, there was no significant difference in melanin deposition in the epidermis and dermis of the carapace among the yellowish brown, chestnut brown, olive green, and dark brown big-headed turtles. The results of our study indicate that the carapace color darkening in big-headed turtles may not be due to changes in melanin content of the carapace, but is the result of melanin accumulation and superposition in the dorsal corneous layer

    Disentangling the Pelodiscus axenaria complex, with the description of a new Chinese species and neotype designation for P. axenaria (Zhou, Zhang & Fang, 1991)

    No full text
    Gong, Shiping, Fritz, Uwe, Vamberger, Melita, Gao, Yangchun, Farkas, BalĂĄzs (2022): Disentangling the Pelodiscus axenaria complex, with the description of a new Chinese species and neotype designation for P. axenaria (Zhou, Zhang & Fang, 1991). Zootaxa 5125 (2): 131-143, DOI: https://doi.org/10.11646/zootaxa.5125.2.

    Incorporating physiological data into species distribution models to predict the potential distribution range of the red-eared slider in China

    No full text
    Species distribution models (SDMs) have been widely used to predict potentially suitable habitats for invasive alien species (IAS) and evaluate invasion risk. However, SDMs have been discredited because they ignore the physiological processes by which species respond to their environment. Integrating physiological tolerance into the model is essential to improve the prediction accuracy of SDMs. Currently, this approach has not been applied in the study of the worldwide invasive species, the red-eared slider (Trachemys scripta elegans), which is one of the world’s 100 worst invasive species and is widespread in China. In this study, based on hatching experiments, we found that the embryo temperature tolerance range of the red-eared slider was between 21.8 °C and 33.1 °C. Further, we studied the effect of embryo temperature tolerance on the prediction of potential invasion areas for this alien reptile species. The high suitability area (530,214.71 km2) predicted by the SDM incorporating embryo temperature tolerance data were 20.9% smaller than that (641,107.60 km2) predicted by the SDM without considering embryo temperature tolerance. The difference between the two SDMs is primarily concentrated at the edges of the high suitability areas. The incorporation of embryo temperature tolerance data influenced the model's predictions by effectively reducing the extent of edges of the high suitability areas. High suitability areas for red-eared sliders are mainly concentrated in South China, Central China, and East China, with a few in North and Southwest China. There is almost no invasion risk in most of the northeast and northwest provinces of China. This study not only has theoretical significance for optimizing model predictions, but also provides an important scientific basis for prevention and risk assessment of invasion by red-eared sliders in China

    Effect of incubation temperature and substrate moisture on embryonic development, hatchling phenotypes and post-hatching growth in the Reeves’ Turtle, Mauremys reevesii

    No full text
    Background Reeves’ Turtles (Mauremys reevesii) are economically important in aquaculture in China. Understanding the effects of incubation temperature and substrate moisture on embryos and hatchlings is of great significance for improving the artificial culture of M. reevesii. However, available studies have not yet determined the thermal and hydric optima for M. reevesii eggs, and the potential interaction between the two factors. Methods In this study, eggs of M. reevesii were incubated at five temperature levels (23, 26, 29, 32 and 35 °C, fluctuation range ± 0.5 °C). In each temperature level, there were three substrate moisture levels (1:0.5, 1:0.9 and 1:1.2, weight ratio of vermiculite to water). Thus, a total of 15 combinations of temperature and moisture were used to examine the effects of incubation temperature and substrate moisture on incubation duration, hatching success, hatchling phenotypes, post-hatching growth and hatchling survival. Results Substrate moisture did not significantly affect most development parameters (except incubation duration and carapace width of hatchlings). Eggs incubated at low moisture level (1:0.5) had a longer incubation duration and produced hatchlings with smaller carapace widths than those incubated at medium (1:0.9) or high (1:1.2) moisture levels. Incubation temperature had a significant effect on incubation duration, hatching success, hatchling phenotypes and hatchling survival. Incubation duration decreased as incubation temperature increased. Eggs incubated at 23, 26 and 29 °C showed higher hatching success than those incubated at 32 and 35 °C. Hatchlings incubated at 32 °C were smaller in body size and mass than those incubated at 23, 26 and 29 °C. At 12 months of age, incubation temperature had no long-lasting effect on body mass, but hatchlings incubated at 23 and 35 °C had lower survival rates than those incubated at 26, 29 and 32 °C. For the development of embryos and hatchlings, the interaction between incubation temperature and substrate moisture was not significant. Conclusions Our results indicate that incubation temperature has a significant influence on the development of embryos and hatchlings of M. reevesii, while substrate moisture only significantly affects the incubation duration and carapace width of hatchlings. The combination of an incubation temperature of 29 ± 0.5 °C and a substrate moisture level of 1:1.2 represented optimal incubation conditions in this experiment. Such incubation conditions are helpful in obtaining higher hatching success, shorter incubation duration and higher survival rates for this aquaculture species

    Captive breeding of pangolins: current status, problems and future prospects

    Get PDF
    Pangolins are unique placental mammals with eight species existing in the world, which have adapted to a highly specialized diet of ants and termites, and are of significance in the control of forest termite disaster. Besides their ecological value, pangolins are extremely important economic animals with the value as medicine and food. At present, illegal hunting and habitat destruction have drastically decreased the wild population of pangolins, pushing them to the edge of extinction. Captive breeding is an important way to protect these species, but because of pangolin’s specialized behaviors and high dependence on natural ecosystem, there still exist many technical barriers to successful captive breeding programs. In this paper, based on the literatures and our practical experience, we reviewed the status and existing problems in captive breeding of pangolins, including four aspects, the naturalistic habitat, dietary husbandry, reproduction and disease control. Some recommendations are presented for effective captive breeding and protection of pangolins
    corecore