19 research outputs found

    Potential Use of Stem Cells for Kidney Regeneration

    Get PDF
    Significant advances have been made in stem cell research over the past decade. A number of nonhematopoietic sources of stem cells (or progenitor cells) have been identified, including endothelial stem cells and neural stem cells. These discoveries have been a major step toward the use of stem cells for potential clinical applications of organ regeneration. Accordingly, kidney regeneration is currently gaining considerable attention to replace kidney dialysis as the ultimate therapeutic strategy for renal failure. However, due to anatomic complications, the kidney is believed to be the hardest organ to regenerate; it is virtually impossible to imagine such a complicated organ being completely rebuilt from pluripotent stem cells by gene or chemical manipulation. Nevertheless, several groups are taking on this big challenge. In this manuscript, current advances in renal stem cell research are reviewed and their usefulness for kidney regeneration discussed. We also reviewed the current knowledge of the emerging field of renal stem cell biology

    Crk and CrkL adaptor proteins: networks for physiological and pathological signaling

    Get PDF
    The Crk adaptor proteins (Crk and CrkL) constitute an integral part of a network of essential signal transduction pathways in humans and other organisms that act as major convergence points in tyrosine kinase signaling. Crk proteins integrate signals from a wide variety of sources, including growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. Mounting evidence indicates that dysregulation of Crk proteins is associated with human diseases, including cancer and susceptibility to pathogen infections. Recent structural work has identified new and unusual insights into the regulation of Crk proteins, providing a rationale for how Crk can sense diverse signals and produce a myriad of biological responses

    De Novo Kidney Regeneration with Stem Cells

    Get PDF
    Recent studies have reported on techniques to mobilize and activate endogenous stem-cells in injured kidneys or to introduce exogenous stem cells for tissue repair. Despite many recent advantages in renal regenerative therapy, chronic kidney disease (CKD) remains a major cause of morbidity and mortality and the number of CKD patients has been increasing. When the sophisticated structure of the kidneys is totally disrupted by end stage renal disease (ESRD), traditional stem cell-based therapy is unable to completely regenerate the damaged tissue. This suggests that whole organ regeneration may be a promising therapeutic approach to alleviate patients with uncured CKD. We summarize here the potential of stem-cell-based therapy for injured tissue repair and de novo whole kidney regeneration. In addition, we describe the hurdles that must be overcome and possible applications of this approach in kidney regeneration

    Gross Hematuria Following SARS-CoV-2 Infection in IgA Nephropathy: A Report of 5 Cases

    No full text
    Gross hematuria after upper respiratory tract infections is a well-known characteristic symptom of immunoglobulin A nephropathy (IgAN). In recent years, there have been several reports of existing or newly diagnosed patients with IgAN susceptible to gross hematuria after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination. However, reports of patients with IgAN and gross hematuria after SARS-CoV-2 infection are extremely rare despite a considerable number of patients with coronavirus disease 2019 (COVID-19) who preferentially present with upper respiratory symptoms. Here, we report the cases of 5 Japanese patients with IgAN who developed gross hematuria associated with SARS-CoV-2 infection. These patients presented with fever and other COVID-19–related symptoms, followed by the appearance of gross hematuria within 2 days, which lasted for 1-7 days. Acute kidney injury occurred after gross hematuria in 1 case. In all cases, microhematuria was identified before gross hematuria associated with SARS-CoV-2 infection, and it persisted after the gross hematuria episode. Because repeated gross hematuria and persistent microhematuria may lead to irreversible kidney injury, the clinical manifestations of patients with IgAN during the COVID-19 pandemic should be carefully monitored

    Adipose tissue-derived mesenchymal stem cells in long-term dialysis patients display downregulation of PCAF expression and poor angiogenesis activation.

    No full text
    We previously demonstrated that mesenchymal stem cells (MSCs) differentiate into functional kidney cells capable of urine and erythropoietin production, indicating that they may be used for kidney regeneration. However, the viability of MSCs from dialysis patients may be affected under uremic conditions. In this study, we isolated MSCs from the adipose tissues of end-stage kidney disease (ESKD) patients undergoing long-term dialysis (KD-MSCs; mean: 72.3 months) and from healthy controls (HC-MSCs) to compare their viability. KD-MSCs and HC-MSCs were assessed for their proliferation potential, senescence, and differentiation capacities into adipocytes, osteoblasts, and chondrocytes. Gene expression of stem cell-specific transcription factors was analyzed by PCR array and confirmed by western blot analysis at the protein level. No significant differences of proliferation potential, senescence, or differentiation capacity were observed between KD-MSCs and HC-MSCs. However, gene and protein expression of p300/CBP-associated factor (PCAF) was significantly suppressed in KD-MSCs. Because PCAF is a histone acetyltransferase that mediates regulation of hypoxia-inducible factor-1α (HIF-1α), we examined the hypoxic response in MSCs. HC-MSCs but not KD-MSCs showed upregulation of PCAF protein expression under hypoxia. Similarly, HIF-1α and vascular endothelial growth factor (VEGF) expression did not increase under hypoxia in KD-MSCs but did so in HC-MSCs. Additionally, a directed in vivo angiogenesis assay revealed a decrease in angiogenesis activation of KD-MSCs. In conclusion, long-term uremia leads to persistent and systematic downregulation of PCAF gene and protein expression and poor angiogenesis activation of MSCs from patients with ESKD. Furthermore, PCAF, HIF-1α, and VEGF expression were not upregulated by hypoxic stimulation of KD-MSCs. These results suggest that the hypoxic response may be blunted in MSCs from ESKD patients

    Proliferation and senescence of HC-MSCs and KD-MSCs.

    No full text
    <p>(A) Representative images of HC-MSCs and KD-MSCs (magnification, ×40). Left columns show assessment of senescence using the senescence biomarker SA-β-gal (green) in HC-MSCs and KD-MSCs. Black scale bars represent 50 µm. Right columns show DAPI staining of senescence-associated heterochromatic foci (SAHF) in MSC DNA foci. White scale bars represent 10 µm. Insets show an enlargement of DAPI staining (white scale bars represent 5 µm). Early passage: P5; late passage: P10. (B) Quantitative assessment of SA-β-gal positive cells. Data are the mean ± SE (<i>n</i> = 4). <sup>*</sup><i>P</i><0.05. (C) Cumulative population doublings (PDs) of HC-MSCs (<i>n</i> = 5) and KD-MSCs (<i>n</i> = 5) from passage 5–10. Data are expressed as the mean ± SE. <sup>*</sup><i>P</i><0.05. Experiments were performed in triplicate.</p
    corecore