36 research outputs found

    Tachycardia-induced myocardial ischemia and diastolic dysfunction potentiate secretion of ANP, not BNP, in hypertrophic cardiomyopathy

    Get PDF
    Kido, S; Hasebe, N; Ishii, Y; Kikuchi, K, AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 290(3), H1064-H1070, 2006. "Copyright 2006 by the American Physical Society." publisherThe aim of this study was to investigate what factor determines tachycardia-induced secretion of atrial and brain natriuretic peptides (ANP and BNP, respectively) in patients with hypertrophic cardiomyopathy (HCM). HCM patients with normal left ventricular (LV) systolic function and intact coronary artery (n = 22) underwent rapid atrial pacing test. The cardiac secretion of ANP and BNP and the lactate extraction ratio (LER) were evaluated by using blood samples from the coronary sinus and aorta. LV end-diastolic pressure (LVEDP) and the time constant of LV relaxation of tau were measured by a catheter-tip transducer. These parameters were compared with normal controls (n = 8). HCM patients were divided into obstructive (HOCM) and nonobstructive (HNCM) groups. The cardiac secretion of ANP was significantly increased by rapid pacing in HOCM from 384 ± 101 to 1,268 ± 334 pg/ml (P < 0.05); however, it was not significant in control and HNCM groups. In contrast, the cardiac secretion of BNP was fairly constant and rather significantly decreased in HCM (P < 0.01). The cardiac ANP secretion was significantly correlated with changes in LER (r = –0.57, P < 0.01) and tau (r = 0.73, P < 0.001) in HCM patients. Tachycardia potentiates the cardiac secretion of ANP, not BNP, in patients with HCM, particularly when it induces myocardial ischemia and LV diastolic dysfunction

    Mechanical Stress Activates Smad Pathway through PKCδ to Enhance Interleukin-11 Gene Transcription in Osteoblasts

    Get PDF
    BACKGROUND: Mechanical stress rapidly induces ΔFosB expression in osteoblasts, which binds to interleukin (IL)-11 gene promoter to enhance IL-11 expression, and IL-11 enhances osteoblast differentiation. Because bone morphogenetic proteins (BMPs) also stimulate IL-11 expression in osteoblasts, there is a possibility that BMP-Smad signaling is involved in the enhancement of osteoblast differentiation by mechanical stress. The present study was undertaken to clarify whether mechanical stress affects BMP-Smad signaling, and if so, to elucidate the role of Smad signaling in mechanical stress-induced enhancement of IL-11 gene transcription. METHODOLOGY/PRINCIPAL FINDINGS: Mechanical loading by fluid shear stress (FSS) induced phosphorylation of BMP-specific receptor-regulated Smads (BR-Smads), Smad1/5, in murine primary osteoblasts (mPOBs). FSS rapidly phosphorylated Y311 of protein kinase C (PKC)δ, and phosphorylated PKCδ interacted with BR-Smads to phosphorylate BR-Smads. Transfection of PKCδ siRNA or Y311F mutant PKCδ abrogated BR-Smads phosphorylation and suppressed IL-11 gene transcription enhanced by FSS. Activated BR-Smads bound to the Smad-binding element (SBE) of IL-11 gene promoter and formed complex with ΔFosB/JunD heterodimer via binding to the C-terminal region of JunD. Site-directed mutagenesis in the SBE and the AP-1 site revealed that both SBE and AP-1 sites were required for full activation of IL-11 gene promoter by FSS. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that PKCδ-BR-Smads pathway plays an important role in the intracellular signaling in response to mechanical stress, and that a cross-talk between PKCδ-BR-Smads and ΔFosB/JunD pathways synergistically stimulates IL-11 gene transcription in response to mechanical stress

    NaPi-IIc induces vacuole formation in OK cells

    Get PDF
    NaPi-IIc/SLC34A3 is a sodium-dependent inorganic phosphate (Pi) transporter in the renal proximal tubules and its mutations cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). In the present study, we created a specific antibody for opossum SLC34A3, NaPi-IIc (oNaPi-IIc), and analyzed its localization and regulation in opossum kidney cells (a tissue culture model of proximal tubular cells). Immunoreactive oNaPi-IIc protein levels increased during the proliferative phase and decreased during differentiation. Moreover, stimulating cell growth upregulated oNaPi-IIc protein levels, whereas suppressing cell proliferation downregulated oNaPi-IIc protein levels. Immunocytochemistry revealed that endogenous and exogenous oNaPi-IIc proteins localized at the protrusion of the plasma membrane, which is a phosphatidylinositol 4,5-bisphosphate (PIP2) rich-membrane, and at the intracellular vacuolar membrane. Exogenous NaPi-IIc also induced cellular vacuoles and localized in the plasma membrane. The ability to form vacuoles is specific to electroneutral NaPi-IIc, and not electrogenic NaPi-IIa or NaPi-IIb. In addition, mutations of NaPi-IIc (S138F and R468W) in HHRH did not cause cellular PIP2-rich vacuoles. In conclusion, our data anticipate that NaPi-IIc may regulate PIP2 production at the plasma membrane and cellular vesicle formation

    Fibroblast growth factor 23 mediates the phosphaturic actions of cadmium

    Get PDF
    Phosphaturia has been documented following cadmium (Cd) exposure in both humans and experimental animals. The fibroblast growth factor 23 (FGF23)/klotho axis serves as an essential phosphate homeostasis pathway in the bone-kidney axis. In the present study, we investigated the effects of Cd on phosphate (Pi) homeostasis in mice. Following Cd injection into WT mice, plasma FGF23 concentration was significantly increased. Urinary Pi excretion levels were significantly higher in Cd-injected WT mice than in control group. Plasma Pi concentration decreased only slightly compared with control group. No change was observed in plasma parathyroid hormone and 1,25-dihydroxy vitamin D3 in both group of mice. We observed a decrease in phosphate transport activity and also decrease in expression of renal phosphate transporter SLC34A3 [NaPi-IIc/NPT2c], but not SLC34A1 [NaPi-IIa/NPT2a]. Furthermore, we examined the effect of Cd on Npt2c in Npt2a-knockout (KO) mice which expresses Npt2c as a major NaPi co-transporter. Injecting Cd to Npt2aKO mice induced significant increase in plasma FGF23 concentration and urinary Pi excretion levels. Furthermore, we observed a decrease in phosphate transport activity and renal Npt2c expression in Cd-injected Npt2a KO mice. The present study suggests that hypophosphatemia induced by Cd may be closely associated with the FGF23/klotho axis

    Identification and functional analysis of a splice variant of mouse sodium-dependent phosphate transporter Npt2c

    Get PDF
    Mutations in the SLC34A3 gene, a sodium-dependent inorganic phosphate (Pi) cotransporter, also referred to as NaPi IIc, causes hereditary hypophosphatemic rickets with hypercalciuria (HHRH), an autosomal recessive disorder. In human and rodent, NaPi IIc is mainly localized in the apical membrane of renal proximal tubular cells. In this study, we identified mouse NaPi IIc variant (Npt2c-v1) that lacks the part of the exon 3 sequence that includes the assumed translation initiation site of Npt2c. Microinjection of mouse Npt2c-v1 cRNA into Xenopus oocytes demonstrated that Npt2c-v1 showed sodium-dependent Pi cotransport activity. The characterization of pH dependency showed activation at extracellular alkaline-pH. Furthermore, Npt2c-v1 mediated Pi transport activity was significantly higher at any pH value than those of Npt2c. In an in vitro study, the localization of the Npt2c-v1 protein was detected in the apical membrane in opossum kidney cells. The expression of Npt2c-v1 mRNA was detected in the heart, spleen, testis, uterus, placenta, femur, cerebellum, hippocampus, diencephalon and brain stem of mouse. Using mouse bone primary cultured cells, we showed the expression of Npt2c-v1 mRNA. In addition, the Npt2c protein was detected in the spermatozoa head. Thus, Npt2c-v1 was expressed in extra-renal tissues such as epididymal spermatozoa and may function as a sodium-dependent phosphate transporter

    Muscle atrophy in patients wirh ckd results from fgf23/klotho-mediated supression of insulin/igf-i signaling

    Get PDF
    Muscle atrophy is a significant consequence of chronic kidney disease (CKD) that increases a patient’s risk of mortality and decrease their quality of life. In CKD patients, the circulation levels of FGF23 are significantly increased, but the exact pathological significance of the increase and relationship between FGF23 and muscle atrophy are not clear. Because of Klohto, acts as a co-receptor of FGF23 is detectable in limited tissues including in kidney and brain, but not in skeletal muscles. In contrast, recently reports indicated that the extracellular domain of klohto is cleavage for some reason on the cell surface and detected in the blood in animals. In this study, we attempted to identify the causative factors responsible for the shedding of Klotho, and whether both FGF23 and Klohto induced muscle atrophy via reduction of insulin/IGF-I signaling. We first investigated by treating kidney cells with various factors related in pathological factors in CKD. As a result, we found that advanced glycation endproducts (AGEs), an accumulated in patients with CKD and diabetes mellitus, increases shedding of Klohto in kidney cells. It is common knowledge that insulin/IGF-I signaling is necessary for normal skeletal growth. As a result, we showed that both FGF23 and Klohto inhibited differentiation of cultured skeletal muscle cells through down-regulation of insulin/IGF-I signaling. These observations suggested a divergent role of FGF23 and soluble klohto in the regulation of skeletal muscle differentiation and thereby muscle atrophy under pathological conditioned in CKD patients. Our results further imply that FGF23/Klohto may serve a new therapeutic target for CKD-induced muscle atrophy

    Induction of endosomal/lysosomal pathways in differentiating osteoblasts as revealed by combined proteomic and transcriptomic analyses

    Get PDF
    AbstractWe have analyzed proteome changes associated with bone-forming osteoblast differentiation by quantitative differential proteomic and transcriptomic analyses using in vitro differentiation model. Sixty nine proteins were found up-regulated (>2-fold) and 18 were down-regulated (<0.5-fold) at protein level. The mRNA levels of these proteins were then analyzed by quantitative real-time PCR combined with clustering analysis. The most prominent cluster with increased protein and mRNA levels contains endosomal and lysosomal proteins, demonstrating the drastic induction of degradative endosomal/lysosomal pathways in osteoblasts. Osteoblasts, therefore, are involved not only in the synthesis but also in the turnover of the extracellular matrix proteins such as collagens
    corecore