105 research outputs found

    Evaluation of a static mixer as a new microfluidic method for liposome formulation

    Get PDF
    Introduction: Microfluidic formulation of liposomes has been extensively studied as a potential replacement for batch methods, which struggle with problems in scalability and difficulty in modulating conditions. Although microfluidic devices are considered to be able to combat these issues, an adequate replacement method has yet to be established.Methods: This paper examines the potential of a static mixer (SM) by comparing the encapsulation efficiency, loading, lamellarity, and user-friendliness with a commonly used microfluidic device, a staggered herringbone micromixer (SHM).Results: In both devices, it was found that as the initial lipid concentration increased, the particle size increased; however, the overall particle size was seen to be significantly larger in the liposomes prepared with SM. PDI remained significantly smaller in SM, however, signifying that better control of the particle size was accomplished in SM. In addition, the encapsulation efficiency was slightly smaller in SM compared to SHM, and in both devices, the values increased as the initial lipid concentration increased. The increase in encapsulation efficiencies was significantly smaller than that of the theoretical encapsulation efficiency, and this was found to be due to the increase in lamellarity as the initial lipid concentration increased.Discussion: In terms of user-friendliness, SM demonstrated significant advantages. The mixing elements could be taken out from the device, allowing for thorough cleaning of the element and device before and after experiments and ensuring experiments are conducted at virgin state in every round. Consequently, it was found that SM not only can produce uniformly distributed liposomes but has the potential to become a more practical method for liposome formulation with modifications in the mixing elements

    Sumac (Rhus coriaria) Extract-Loaded Polymeric Nanosheets Efficiently Protect Human Dermal Fibroblasts from Oxidative Stress

    Get PDF
    Under healthy physiological conditions, living organisms possess a variety of antioxidant mechanisms to scavenge overproduced reactive oxygen species (ROS). However, under pathological circumstances, endogenous antioxidant systems may not be adequate to eliminate the excessive amount of oxidants, and thus, a continuous exogenous antioxidant income is required. In this regard, sumac (Rhus coriaria) extract is a good candidate for therapeutic applications, because of its high content of antioxidant polyphenolic compounds. In this work, sumac extract-loaded nanosheets (sumac-nanosheet) have been exploited for loading and controlled release of sumac extract, envisioning topical drug delivery applications. Sumac extract has been obtained through the solvent extraction method, and polymeric nanosheets have been thereafter prepared through the spin coating-assisted layer-by-layer deposition of polycaprolactone (PCL), sumac extract, and poly(d,l-lactic acid) (PDLLA). The collected data show a rich content of the sumac extract in terms of polyphenolic compounds, as well as its strong antioxidant properties. Moreover, for the first time in the literature, we demonstrated the possibility of efficiently loading such extract in polymeric nanosheets and the suitability of this nanoplatform as a reactive oxygen species scavenger in human dermal fibroblasts treated with a pro-oxidant insult

    NLRP3 inflammasome-activating arginine-based liposomes promote antigen presentations in dendritic cells

    Get PDF
    Tianshu Li, Matthias Zehner, Jieyan He, Tomasz Próchnicki, Gabor Horvath, Eicke Latz, Sven Burgdorf, Shinji Takeoka. NLRP3 inflammasome-activating arginine-based liposomes promote antigen presentations in dendritic cells. International Journal of Nanomedicine. 2019; 2019(14):3503—3516. doi:10.2147/IJN.S20237

    An Assay to Evaluate the Function of Liposomal Platelet Substitutes Delivered to Platelet Aggregates

    Get PDF
    Aggregation of liposomal platelet substitutes with activated platelets is the primary endpoint to estimate hemostatic potential. Although light transmission aggregometry is a “gold standard” in assessing platelet aggregation in vitro, this method is less specific and sensitive when tested using liposomal platelet substitutes. In the current study, a new method is developed to evaluate the function of platelet substitutes. By labeling liposomes with a fluorescent dye, DiD, we evaluated their ability to target platelet aggregates using a fluorescence microscope. By incorporating an image-based 96 microtiter microplate, this method was optimized by varying the final lipid concentrations and washing times and validated using unmodified liposomes (e.g., L550 with 0 mol% of carboxylic headgroup lipid; L551 with 9 mol% of carboxylic headgroup lipid) and modified liposomes (e.g., H12-L551 with 9 mol% of carboxylic headgroup lipid and 0.3 mol% of dodecapeptide). Our results showed that 200 μM of H12-L551 liposomes and four washes represent optimal conditions for quantitative fluorescence imaging. This method allowed users to qualitatively observe the fluorescently labeled liposomes involved in platelet aggregates. The imaging analysis tool was sufficiently sensitive to quantitatively determine the significantly enhanced delivery of the modified liposomes to platelet aggregates. This enhancement was achieved using dodecapeptide, which specifically binds to activated platelets. This robust and high-throughput method enables the evaluation of liposome function and should facilitate the development of platelet substitutes with a greater ability to target platelet aggregates

    The three dimensional distribution of chromium and nickel alloy welding fumes.

    Get PDF
    In the present study, the fumes generated from manual metal arc (MMA) and submerged metal arc (SMA) welding of low temperature service steel, and the chromium and nickel percentages in these fumes, were measured at various horizontal distances and vertical heights from the arc in order to obtain a three dimensional distribution. The MMA welding fume concentrations were significantly higher than the SMA welding fume concentrations. The highest fume concentration on the horizontal was shown in the fumes collected directly above the arc. The fume concentration vertically was highest at 50 cm height and reduced by half at 150 cm height. The fume concentration at 250 cm height was scarcely different from that at 150 cm height. The distribution of the chromium concentration vertically was analogous to the fume concentration, and a statistically significant difference in the chromium percentages was not found at the different heights. The nickel concentrations were not statistically significant within the welding processes, but the nickel percentages in the SMA welding fumes were statistically higher than in the MMA welding fumes. The highest nickel concentration on the horizontal was found in the fumes collected directly above the arc. The highest nickel concentration vertically showed in the fume samples collected at 50 cm height, but the greater the height the larger the nickel percentage in the fumes.</p

    A Comparative Analysis of the Murine Thymic Microenvironment in Normal, Autoimmune, and Immunodeficiency States

    Get PDF
    It is widely accepted that the thymic microenvironment regulates normal thymopoiesis through a highly coordinated and complex series of cellular and cytokine interactions. A direct corollary of this is that abnormalities within the microenvironment could be of etiologic significance in T-cell-based diseases. Our laboratory has developed a large panel of monoclonal antibodies (mAbs) that react specifically with epithelial or nonepithelial markers in the thymus. We have taken advantage of these reagents to characterize the thymic microenvironment of several genetic strains of mice, including BALB/cJ, C57BL/6J, NZB/BlnJ, SM/J, NOD/Ltz, NOD/Ltz-scid/sz, C57BL/6J-Hcph me/Hcph me, and ALY/NscJcl-aly/aly mice, and littermate control animals. We report herein that control mice, including strains of several backgrounds, have a very consistent phenotypic profile with this panel of monoclonal antibodies, including reactivity with thymic epithelial cells in the cortex, the medulla and the corticomedullary junction, and the extracellular matrix. In contrast, the disease-prone strains studied have unique, abnormal staining of thymic cortex and medulla at both the structural and cellular levels. These phenotypic data suggest that abnormalities in interactions between developing thymocytes and stromal cells characterize disease-prone mice

    Organization of molecular assemblies and ion conduction

    Get PDF
    制度:新 ; 文部省報告番号:甲860号 ; 学位の種類:工学博士 ; 授与年月日1991-03-15 ; 早大学位記番号:新1668 ; 理工学図書館請求番号:1423早稲田大
    corecore