23 research outputs found

    Megahertz-wave-transmitting conducting polymer electrode for device-to-device integration

    Get PDF
    The ideal combination of high optical transparency and high electrical conductivity, especially at very low frequencies of less than the gigahertz (GHz) order, such as the radiofrequencies at which electronic devices operate (tens of kHz to hundreds of GHz), is fundamental incompatibility, which creates a barrier to the realization of enhanced user interfaces and ‘device-to-device integration.’ Herein, we present a design strategy for preparing a megahertz (MHz)-transparent conductor, based on a plasma frequency controlled by the electrical conductivity, with the ultimate goal of device-to-device integration through electromagnetic wave transmittance. This approach is verified experimentally using a conducting polymer, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), the microstructure of which is manipulated by employing a solution process. The use of a transparent conducting polymer as an electrode enables the fabrication of a fully functional touch-controlled display device and magnetic resonance imaging (MRI)-compatible biomedical monitoring device, which would open up a new paradigm for transparent conductors. © 2019, The Author(s

    Active Accumulation of Spherical Analytes on Plasmonic Hot Spots of Double-Bent Au Strip Arrays by Multiple Dip-Coating

    No full text
    To achieve sensitive plasmonic biosensors, it is essential to develop an efficient method for concentrating analytes in hot spots, as well as to develop plasmonic nanostructures for concentrating light. In this study, target analytes were delivered to the surface of double-bent Au strip arrays by a multiple dip-coating method; they were self-aligned in the valleys between neighboring Au strips by capillary forces. As the valleys not only accommodate target analytes but also host strong electromagnetic fields due to the interaction between adjacent strips, sensitive measurement of target analytes was possible by monitoring changes in the wavelength of a localized surface plasmon resonance. Using the proposed plasmonic sensor and target delivery method, the adsorption and saturation of polystyrene beads 100 nm in size on the sensor surface were monitored by the shift of the resonance wavelength. In addition, the pH-dependent stability of exosomes accumulated on the sensor surface was successfully monitored by changing the pH from 7.4 to 4.0

    Design and Fabrication of Micro Optical Film by Ultraviolet Roll Imprinting

    No full text
    With increasing demand for large-scale functional optical films with microstructure in the field of flat panel displays, a technology capable of fabricating large-scale polymeric micro-patterns has received much attention. To fabricate large-area micro-optical films, we designed and constructed an ultraviolet roll imprinting system consisting of a roll stamp, a material dispensing unit, a pair of flattening rollers, a contact roller, and a releasing roller. Two methods for fabricating roll stamps were considered: direct machining of the roll base and wrapping a flat stamp around the roll base. As practical examples of the roll imprinting process, we designed and fabricated a lenticular lens array, a pyramidal pattern, and a microlens array, and measured and analyzed their geometrical and optical properties. Our results suggest that the proposed UV roll imprinting process is a feasible method for mass producing large-scale functional optical films

    Binary-state scanning probe microscopy for parallel imaging

    No full text
    Scanning probe microscopy techniques, such as atomic force microscopy and scanning tunnelling microscopy, are harnessed to image nanoscale structures with an exquisite resolution, which has been of significant value in a variety of areas of nanotechnology. These scanning probe techniques, however, are not generally suitable for high-throughput imaging, which has, from the outset, been a primary challenge. Traditional approaches to increasing the scalability have involved developing multiple probes for imaging, but complex probe design and electronics are required to carry out the detection method. Here, we report a probe-based imaging method that utilizes scalable cantilever-free elastomeric probe design and hierarchical measurement architecture, which readily reconstructs high-resolution and high-throughput topography images. In a single scan, we demonstrate imaging with a 100-tip array to obtain 100 images over a 1-mm2 area with 106 pixels in less than 10 min. The potential for large-scale tip integration and the advantage of a simple probe array suggest substantial promise for our approach to high-throughput imaging far beyond what is currently possible. © 2022, The Author(s).11Nsciescopu
    corecore